SOFTWARE

SAXLID

XML parsing library for Palm OS

Reference Manual

Copyright © 2004-2005 inDev Software.
All product names mentioned herein are trademarks or registered trademarks of their respective owners

Contents

(O10] o] (=] 01 T PRSPPI 2
0o oo 11 Tox « o] o [RS 4
Application-defined FUNCLIONSccooiiiiiii e, 5
L 1=T o = VoL TSP PPR 7
Content HandIer INTEITACEocvviee e et 7
CH_StartDOCUMENTFUNCooiiiieiiii it e e nnn e nes 7
CH_ENUDOCUMENTFUNC ...ttt ettt e steete s e s naesae e e e snaenneenne e 7
CH_SHartEIEMENTFUNC......ccueiie ettt e re e te e reesneenne e 7
CH_ENAEIEMENTFUNCcoiiiiie ettt st et e e e et e et sreenreenne e 8
CH_StartPrefiXMappiNGgFUNCoviieie et sre e 8
CH_ENdPrefiXMappingFUNCccvoieic ettt 8

(0F o IO 4 U= Tod (=1 €] U oSSR SOSOS 8
CH_IgnorableWhIteSPACEFUNC.ccveiicie ettt 8
CH_SKIPPEAENTITYFUNC......vecuiiieiecie ettt sae e e nne e 9
CH_ProcessingINStrUCLIONFUNCocveiieiecie sttt sre e 9
CH_SetDOoCUMENTLOCAIOIFUNCciiiiiiiiiiiie sttt bbb nnn e nes 9

File Provider INTEITACEooviiieiee ettt st beeae s 9
FP_OPENFIEFUNCc.ei ittt et et be et et e s be et e neesteeeeeneenns 9
FP_GEetFIlEBIOCKSIZEFUNCccvviieeieciece ettt re e ns 9
FP_REAAFIIEFUNCcveeiecee ettt be et e e e sreete e e sraene s 10
FP_CIOSEFIIEFUNC ...ttt ba et e sreete e sraene s 10
FP_SEEKFIIEFUNC......c.eiieie ettt e ae et e e e sbeeteeneenraeee s 10
FP_GELFIESIZEFUNC.......eiciicie ettt te e te e te e sraene s 11
DaAta STFUCTUTES ...ttt e e e st e e e e s e e e e s nsr e e e e s nnnrnes 5
CharaCterENCOUINGcveviitiitieiieieie ettt sb e bbbt 5

(@00 0] =101 P T To | T ST 5
115 o 017 T [SRR 5
INterface fUNCLIONS.ooiii e e 12
Standard lHBrary fUNCHONS.........ooo e 12
SAXLIDOPEN ..ottt ettt e re e e e te e e e e e nreenrenraenre s 12
SAXLIDCIOSE ...ttt ettt e s b et et e s te e te e st e e ae e teeseesreenteeneeareenne s 12
COMMON TUNCLIONS ...t ettt b ettt et et e bt e nbe e st e sreebeeneesbeebens 12
SAXLIDSEtCONENtHANGIENeceieieie et ra e 12
SAXLIDSEIFIEPIOVITEiveeieeece ettt ste e sre e e 13
SAXLIDPAISE ...ttt ettt et e s et et e e r e e re et e re e re e e e e e nre e renraenre s 13
SAXLIDGEICUITENISIALE.c.eeitieiecic e re e e e sre e sraenae s 14
SAXLIDPAISERESUITIEecviiiiieite ettt st et sba et e et e s te e te e s e s seesteeseesreesneeneesraenean 14
Document Locator interface fUNCHIONScooviiiiiiiiie e 15
SAXLID _DL_GEtSYSIEMIU ...ecvieiiieie ettt resreenne s 15
SAXLID _DL_GEtPUBIICIUccueiiieiieiee et 15

SAXLib_DL_GetColUMNNUMDENcoivieiiiiecieeie et 15

SAXLID_DL_GetLINENUMDETc.eiiieiiee e 16
Attribute Interface FUNCHIONS.........oiiiiiiiiie e 16
SAXLib_Attr_ GetINdeXBYQNAIMEc.coviiieiieie et sseeeeeneeneas 16
SAXLib_Attr_GetIndeXBYNAMESPACEcovertiriiriiriieieienieste sttt enes 16
SAXLID_ATr GEILENGIN ... 17
SAXLID_ALr_GetLOCAINAME. ... cciiiieiieie ettt sr e eneenns 17
SAXLID_ A GEIQNAMEeviiieeiiciesie ettt te et e sreeeesreesseeneenneenes 17
SAXLID_Attr_GetTYPEBYINUEXoouiiiiiiiiiieie s 18
SAXLIib_Attr_GetTYpPeBYQNAEIMEcooiiiiiiiieieiieiee e 18
SAXLIib_Attr_GetTypeBYNAMESPACEciertiriiriieiieieie ettt 18
SAXLID AT GEIUIT ..ttt et ste et sneenreeaenneenns 19
SAXLIb_Attr_GetValUEBYINUEXcoiviiiiieieee et 19
SAXLib_Attr_ GetValueBYQNEAME........ccuiiieiieie ettt neas 19
SAXLib_Attr_GetValueByNamMESPACE...........ccviiiirieieiierie st 20

Introduction

SAXLib is an easy to use freeware XML parsing library for Palm OS. Its API is based on the
SAX (“Simple API for XML"), an event-driven interface in which the parser invokes one of
several methods supplied by the caller when a “parsing event” occurs. “Events” include
recognizing an XML tag, finding an error, encountering a reference to an external entity, or
processing a DTD specification.

SAX interface was initially developed for Java programming language, but today you can find its
implementation almost for any programming language on many computing platforms. SAXLib
Is an attempt to bring SAX interface to Palm OS platform.

SAXLib partially implements SAX 2 interface, as specified at SAX project homepage
http://www.saxproject.org. SAXL.ib is based on C programming language (and SAX
specification is created for Java), so not every aspect could be implemented exactly (for
example, there are no “interfaces” in C language). For such cases other C-specific constructions
were used keeping the whole ideology as close to original specification as possible.

This manual is divided to three parts. The first part, Data structures, describes all data types used
with SAX Lib. The next part, Application-defined functions, describes callback functions which
SAXLib uses to communicate with your application. It includes two major “interfaces”: Content
Handler and File Provider. The last part, Interface functions, is a reference to SAXLib functions
your application calls to parse XML data. It includes functions which initialize library, start and
resume parsing and two “interfaces”: Document Locator and Attribute.

http://www.saxproject.org/

Data structures

CharacterEncoding

Definition:
typedef enum
{
encodingCP1250=0, /* charEncodingCP1250 */
encodingCP1251, /* charEncodingCP1251 */
encodingCP1252, /* charEncodingCP1252 */
encodingCP1253, /* charEncodingCP1253 */
encodingCP1254, /* charEncodingCP1254 */
encodingCP1255, /* charEncodingCP1255 */
encodingCP1256, /* charEncodingCP1256 */
encodingCP1257, /* charEncodingCP1257 */
encodinglS08859 1, /* charEncodinglS08859 1 */
encodinglS08859 2, /* charEncodinglS08859 2 */
encodinglS08859 3, /* charEncodinglS08859 3 */
encodinglS08859 4, /* charEncodinglS08859 4 */
encodinglS08859 5, /* charEncodinglS08859 5 */
encodinglS08859 6, /* charEncodinglS08859 6 */
encodinglS08859 7, /* charEncodinglS08859 7 */
encodinglS08859 8, /* charEncodinglS08859 8 */
encodinglS08859 9 /* charEncodinglS08859 9 */

} CharacterEncoding;

Lists all character encodings supported by SAXLib by default. CharacterEncoding type is used
as an argument in SAXLibParse function and defines the character encoding SAXLib should
convert to the Unicode characters in parsed XML data.

ContentHandler

Definition:

typedef struct ContentHandler

{
CH_StartDocumentFunc *StartDocument;
CH_EndDocumentFunc *EndDocument;
CH_StartElementFunc *StartElement;
CH_EndElementFunc *EndElement;
CH_StartPrefixMappingFunc *StartPrefixMapping;
CH_EndPrefixMappingFunc *EndPrefixMapping;
CH_CharactersFunc *Characters;
CH_IgnorableWhitespaceFunc *1gnorableWhitespace;
CH_SkippedEntityFunc *SkippedEntity;
CH_ProcessinglnstructionFunc *Processinglnstruction;
CH_SetDocumentLocatorFunc *SetDocumentLocator;

} ContentHandler;

ContentHandler is a structure of pointers to all function from Content Handler interface. This
type is used to set Content Handler interface with SAXLibSetContentHandler function.

FileProvider
Definition:

typedef struct FileProvider

{
FP_OpenFileFunc *OpenFile;
FP_GetFileBlockSizeFunc *GetFileBlockSize;
FP_ReadFileFunc *ReadFile;
FP_CloseFileFunc *CloseFile;
FP_SeekFileFunc *SeekFile;
FP_GetFileSizeFunc *GetFileSize;

} FileProvider;

FileProvider is a structure of pointers to all functions from File Provider interface. This type is
used to set File Provider interface with SAXLinSetFileProvider function.

Application-defined functions

Interfaces
All callback function headers which SAXLib uses to communicate with an application are the
part of some interface. The interface is a set of functions grouped by the purpose they are used
for.

There are two interfaces defined by SAXLib: Content Handler and File Provider.

Content Handler interface

Application that uses SAXLib functionality may supply to the library pointers for functions from
Content Handler interface (using SAXLibSetContentHandler function). Only the functions
required by the application can be implemented. During the XML content parsing SAXL.ib calls
application’s functions from Content Handler interface to report all possible events which occur
during processing (for example, start of the document, element start, character data etc.).

CH_StartDocumentFunc
Prototype:
typedef void CH_StartDocumentFunc();

Function called when the document parsing starts. Does not transfer any data and can be used
only for initialization on the application side.

CH_EndDocumentFunc

Prototype:
typedef void CH_EndDocumentFunc();

Function called when document parsing ends. It can be used for freeing application memory after
the end of processing.

CH_StartElementFunc

Prototype:
typedef void CH_StartElementFunc(Char* uri, Char* localName, Char*
gName,UInt32 attrliD);
Function called when SAXLib encounters XML element start (start-tag or an empty element tag)
during parsing. This function is called for both standard elements (with element start and element
end pair) and empty elements (element start only).

Parameters:
e (in) uri Pointer to the null-terminated character string with element’s
namespace URI or the empty string (pointer to the null character) if
element has no namespace URI.

e (in) localName Pointer to the null-terminated character string with element’s local
name (without prefix).

e (in) gName Pointer to the null-terminated character string with element’s qualified
name (with prefix). This argument always has non-zero length.

e (in) attriD Attribute list selector which can be used in calling SAXL.ib for
browsing attribute list of this element (see Attribute interface for
details).

CH_EndElementFunc

Prototype:
typedef void CH_EndElementFunc(Char* uri, Char* localName, Char* gName);

Function called when SAXLib encounters XML element end (end-tag) during parsing.
Parameters:

e (in) uri Pointer to the null-terminated character string with element’s
namespace URI or the empty string (pointer to the null character) if
element has no namespace URI.

e (in) localName Pointer to the null-terminated character string with element’s local
name (without prefix).

e (in) gName Pointer to the null-terminated character string with element’s qualified
name (with prefix). This argument always has non-zero length.

CH_StartPrefixMappingFunc

Prototype:
typedef void CH_StartPrefixMappingFunc(Char* prefix, Char* uri);

Not implemented, reserved for the future use.

CH_EndPrefixMappingFunc
Prototype:

typedef void CH_EndPrefixMappingFunc(Char* uri);
Not implemented, reserved for the future use.

CH_CharactersFunc

Prototype:
typedef Boolean CH_CharactersFunc(Char* ch, Intl6 start, Intl6 length,
UInt32 currentState);
Function called each time SAXLib encounters any character data during parsing.
Parameters:

e (in) ch Pointer to the character buffer. Do not assume it to be null-
terminated, but use start and length arguments to find out
characters position in the buffer.

e (in) start Offset of the first reported character in the buffer. Its pointer will
be ch + start. The number of characters is defined by the
length parameter.

e (in) length Number of the characters reported in the buffer pointed by first
three parameters.

e (in) currentState Current parsing state selector. If application interrupts parsing
(returning false from the function) it can acquire serialized parsing
status by calling SAXLibGetCurrentState function with
currentState as a parameter. Afterwards application can resume
parsing from the interruption point.

Result: returns true to continue parsing or false to interrupt it.

CH_IgnorableWhitespaceFunc

Prototype:

typedef void CH_IgnorableWhitespaceFunc(Char* ch, Intl6 start, Intl6
length);

Not implemented, reserved for the future use.

CH_SkippedEntityFunc

Prototype:
typedef void CH_SkippedEntityFunc(Char* name);

Not implemented, reserved for the future use.

CH_ProcessinglnstructionFunc

Prototype:
typedef void CH_ProcessinglnstructionFunc(Char* target, Char* data);

Not implemented, reserved for the future use.

CH_SetDocumentLocatorFunc

Prototype:
typedef void CH_SetDocumentLocatorFunc(UInt32 locatoriD);

Function is called before parsing starts (even before CH_StartDocumentFunc). It provides the
application with document locator selector.
Parameters:

e (in) locatorID Document locator selector your application should save for later
access to document locator functions.

File Provider interface

Before calling SAXLib for XML data parsing application must provide the library with File
Provider interface. SAXL.ib calls functions from this interface to get the data to parse. By
implementing this interface application decides what kind of data SAXLib will parse (from file,
Palm database, XML data in dynamic memory etc.).

FP_OpenFileFunc

Prototype:
typedef Boolean FP_OpenFileFunc(Char* uri, UInt32 *pFileRef);

Function called just before SAXLib starts parsing. This allows application to prepare XML data
source.

Parameters:

e (in) uri Pointer to the null-terminated string passed to SAXLibParse function.
This string is application-specific identifier of the data source. For
example, it can be a file name if XML data will be read from the file.

e (out) pFileRef Pointer to the opened reference value for internal File Provider
interface purposes. Your function should update uInt32 value this
parameter points to. Then all other functions in File Provide interface
will receive this value as one of the parameters. For our example with
XML file source, pFileRef can be used for saving opened file
reference.

Result: returns true if file provider initialization was successful and false if not.

FP_GetFileBlockSizeFunc

Prototype:
typedef UIntl6 FP_GetFileBlockSizeFunc(UInt32 fileRef);

Function called to get data source block size. This function is called by SAXLib before request
for the first data portion to identify data buffer size. Please note that block size cannot change
during parsing.

Parameters:

e (in) fileRef Reference to the opened data source returned by FP_OpenFileFunc
function. Used for data source identification within File Provider
interface implementation.

Result: returns single data block size in bytes.

FP_ReadFileFunc

Prototype:
typedef Boolean FP_ReadFileFunc(UInt32 fileRef, void *pBuf, UIntl6
*readBytes);
Function called to read a single data block from the current position in the data source. The
function should read not more bytes than the block size returned by FP_GetFi leBlockSizeFunc
function.

Parameters:

e (in) fileRef Reference to the opened data source returned by
FP_OpenFileFunc function. Used for data source identification
within File Provider interface implementation.

e (out) pBuf Pointer to the data buffer to read XML data to. The buffer is
already allocated and your function should only read the data
into it.

e (in/out) readBytes Pointer to the number of bytes your function should read to the
buffer. If it was not possible to read the requested number of
bytes (for example, the remaining data is shorter then the block
size) then the function should update this value to the number
of bytes actually read.

Result: returns true if at least one byte was read successively or false if not. Please make sure
that you update readBytes with 0 when returning false.

FP_CloseFileFunc

Prototype:
typedef void FP_CloseFileFunc(UInt32 fileRef);

Function called after SAXL.ib finishes parsing to allow calling application to free memory and
release resources used by File Provider interface.

Parameters:

e (in) fileRef Reference to the opened data source returned by FP_OpenFileFunc
function. Used for data source identification within File Provider
interface implementation.

FP_SeekFileFunc

Prototype:
typedef Boolean FP_SeekFileFunc(UInt32 fileRef, Int32 *offset);

Function called when SAXL.ib needs to change File Provider current source data position.
Parameters:

10

e (in) fileRef Reference to the opened data source returned by FP_OpenFi leFunc
function. Used for data source identification within File Provider
interface implementation.

e (in/out) offset Pointer to the new data source offset to be the current position. If
offset is not divisible by block size (returned by
FP_GetFileBlockSizeFunc function) then you can set the current
position to the nearest offset less or equal to the transferred value,
but divisible by block size. Afterwards you have to update offset
parameter with the new value. For example, the following formula
can be used: *offset = *offset / blockSize * blockSize.

Result: returns true if the change was successful and false if not.

FP_GetFileSizeFunc

Prototype:
typedef UInt32 FP_GetFileSizeFunc(UInt32 fileRef);

Function returns the size in bytes of whole data which parser needs to process.
Parameters:

e (in) fileRef Reference to the opened data source returned by FP_OpenFileFunc
function. Used for data source identification within File Provider
interface implementation.

Result: the size of data in bytes.

11

Interface functions

Standard library functions
These are the standard functions which exist in any shared Palm library.

SAXLibOpen

Prototype:
Err SAXLibOpen(UIntl6 refNum, UInt32 *pClientContext, Ulntl6 *pLibVersion)

This is the standard shared library open function. Call this function first, before any others.
Parameters:
e (in) refNum Library reference number. You can get this number by calling
SysLibFind or SysLibLoad functions.

e (out) pClientContext Pointer to a variable to save client context to. Use the value
returned for all subsequent library function calls.

e (out) pLibVersion Pointer to a variable to save library version. The version has a
format 0xABBC, where A is a major version number, BB is a
minor version number and C is a bug fix number.

Result: returns errNone if there were no errors opening the library. Other possible error code is
memErrNotEnoughSpace, when there was not enough free memory space to init the
library structures.

SAXLibClose

Prototype:
Err SAXLibClose(UIntl16 refNum, UInt32 clientContext)

This is the standard shared library close function. Call it when you have finished working with
SAXLib library.

Parameters:
e (in) refNum Library reference number.
e (in) clientContext Client context received from SAXLibOpen function.

Result: returns errNone if there were no errors. Other possible error code is
SAXLibErrStil10pen, when the library was unable to close.

Common functions

These are the common functions used to prepare library for parsing an XML file, start and
resume parsing.

SAXLibSetContentHandler

Prototype:

void SAXLibSetContentHandler(UIntl6 refNum,UInt32 clientContext,
ContentHandler *handler)

Use this function to provide SAXLib with pointers to Content Handler interface functions. Call
this function before starting parsing. If Content Handler interface is not set you can still launch
parsing, but in this case your application gets no information about XML file content.

Parameters:
e (in) refNum Library reference number.
e (in) clientContext Client context received from SAXLibOpen function.

12

e (in) handler Pointer to ContentHandler structure with pointers to Content
Handler interface functions. If you do not want to receive certain
events listed in Content Handler interface you need to set pointer
to this function to NULL in ContentHandler structure. Pointers
are copied from the location provided to SAXLib internal
structures so you do not have to maintain ContentHandler
structure after calling this function.

SAXLibSetFileProvider

Prototype:
void SAXLibSetFileProvider(UIntl6 refNum, UInt32 clientContext,
FileProvider *provider)
Use this function to provide SAXLib with pointers to File Provider interface. Full
implementation of this interface is required on your application side to parse XML files. Without
this interface setting SAXLib will be unable to read XML file data.

Parameters:
e (in) refNum Library reference number.
e (in) clientContext Client context received from SAXLibOpen function.
e (in) provider Pointer to FileProvider structure with pointers to File Provider

interface functions. You have to provide pointers to all functions
from File Provider interface. Pointers are copied from the
location provided to SAXLib internal structures so you do not
have to maintain FileProvider structure after calling this
function.

SAXLibParse

Prototype:

Err SAXLibParse(UIntl6 refNum, UInt32 clientContext, Char* uri,
CharacterEncoding dstEncoding)

This function starts XML data parsing. Be sure you call it after setting Content Handler and File
Provider interfaces with SAXLibSetContentHandler and SAXLibSetFileProvider functions.

Parameters:

e (in) refNum Library reference number.
e (in) clientContext Client context received from SAXLibOpen function.
e (in) uri Pointer to null-terminated character string that is a unique

identifier of XML document. This string is used only to call File
Provider interface functions to identify the document, so this
string must be understandable to your File Provider
implementation. There are no other requirements to this string.

e (iin) dstEncoding If XML file contains Unicode characters, SAXLib maps them to
encoding specified by this parameter. You can use any encoding
from CharacterEncoding data type, but the most useful will be
to specify codepage used currently by the Palm handheld your
application is running on.

Result: returns errNone if there were no errors and parsing was finished successfully. Other
possible error codes are:

— SAXLibErrNoFileProvider, when File Provider was not set before starting the
parsing.

13

— SAXLibErrFileProviderError, when an error was returned by File Provider
interface function.

— SAXLibErrEncodingNotSupported, when XML document encoding is not
supported.

— SAXLibErrinvalidFile, when SAXLib was unable to parse XML file data.

SAXLibGetCurrentState

Prototype:
Err SAXLibGetCurrentState(UIntl6 refNum, UInt32 currentState, MemHandle
*phState)
Call this function from CH_CharactersFunc function from Content Handler interface if you
want to interrupt XML data parsing (by returning false from CH_CharactersFunc), but have to
save current parsing state to resume parsing later.

Parameters:
e (in) refNum Library reference number.

e (in) currentState Current parsing state selector that your CH_CharactersFunc
function receives as the 4th parameter.

e (in/out) phState Pointer to the memory handle, that SAXLib will allocate to save
current parsing state. It is a responsibility of your application to
free this memory handle after using it.

Result: returns errNone if there were no errors. Other possible error code is
SAXLibErrNotEnoughMemory, when there was not enough dynamic memory to save
current parsing state.

SAXLibParseResume

Prototype:
Err SAXLibParseResume(UIntl6 refNum, UInt32 clientContext, Char* uri,
CharacterEncoding dstEncoding, MemHandle hState)
This function resumes XML data parsing paused from CH_CharactersFunc function from
Content Handler interface (by returning false from CH_CharactersFunc). It is similar to
SAXLibParse and accepts one more parameter, the current parsing state returned by
SAXLibGetCurrentState function.

Parameters:
e (in) refNum Library reference number.
e (in) clientContext Client context received from SAXLibOpen function.
e (in) uri Pointer to null-terminated character string that is a unique

identifier of XML document. This string is used only to call File
Provider interface functions to identify the document, so this
string must be understandable to your File Provider
implementation. There are no other requirements to this string.

e (iin) dstEncoding If XML file contains Unicode characters, SAXLib maps them to
encoding specified by this parameter. You can use any encoding
from CharacterEncoding data type, but the most useful will be
to specify codepage used currently by the Palm handheld your
application is running on.

e (in) hState Handle of the memory chunk that contains parsing state to
resume from. This memory handle is allocated by
SAXLibGetCurrentState function. Please note, that

14

SAXLibParseResume does not free this memory handle and your
application is responsible for it.

Result: returns errNone if there were no errors and parsing was finished successfully. Other
possible error codes are:

— SAXLibErrParam, when memory handle specified by hState parameter contains
invalid parsing status data.

— SAXLibErrNoFileProvider, when File Provider was not set before starting the
parsing.

— SAXLibErrFileProviderError, when an error was returned by File Provider
interface function.

— SAXLibErrEncodingNotSupported, when XML document encoding is not
supported.

— SAXLibErrinvalidFile, when SAXLib was unable to parse XML file data.

Document Locator interface functions

This group of functions can be used to identify current parsing position in XML data. All these
functions receive as one of the parameters document locator identifier. You can obtain this
identifier during XML data parsing by implementing CH_SetDocumentLocatorFunc function
from Content Handler interface.

SAXLib_DL_GetSystemid

Prototype:
Char* SAXLib_DL_GetSystemld(UIntl6 refNum, UInt32 locatorlD)

This function returns a pointer to the XML document identifier that your application supplies to
SAXLibParse and SAXLibParseResume functions (uri parameter).

Parameters:
e (in) refNum Library reference number.

e (in) locatorID Document locator interface ID provided by SAXLib during parsing
to CH_SetDocumentLocatorFunc function from Content Handler
interface.

Result: returns pointer to the null-terminated character string with XML document identifier or
NULL in the case of any error. Please note, that SAXLib_DL_GetSystemld function does not
allocate memory for this string and only returns pointer provided to SAXLibParse and
SAXLibParseResume functions.

SAXLib_DL_GetPublicld

Prototype:
Char* SAXLib_DL_GetPublicld(UIntl6 refNum, UInt32 locatorlD)

Not used in the current library version, returns NULL.

SAXLib_DL_GetColumnNumber

Prototype:
UIntl6 SAXLib DL _GetColumnNumber(UIntl6 refNum, UInt32 locatorliD)

Use this function to get column number of the current parsing position in XML data file.
Together with SAXLib_DL_GetLineNumber can be used to identify the current parsing position.

Parameters:
e (in) refNum Library reference number.

15

e (in) locatorID Document locator interface ID provided by SAXLib during parsing
to CH_SetDocumentLocatorFunc function from Content Handler
interface.

Result: returns column number of the current parsing position or OxFFFF in the case of any error.

SAXLib_DL_GetLineNumber

Prototype:
UIntl6 SAXLib DL _GetLineNumber(UIntl6 refNum, UInt32 locatorlD)

Use this function to get line number of the current parsing position in XML data file. Together
with SAXLib_DL_GetColumnNumber can be used to identify the current parsing position.

Parameters:
e (in) refNum Library reference number.

e (in) locatorID Document locator interface ID provided by SAXLib during parsing
to CH_SetDocumentLocatorFunc function from Content Handler
interface.

Result: returns line number of the current parsing position or 0xFFFF in the case of any error.

Attribute interface functions

Attribute interface is a group of functions used to access attributes of XML data element. Each
time SAXLib finds an XML element it calls user-defined CH_StartElementFunc function from
Content Handler interface. One of the arguments SAXL.ib provides to this function is Attribute
Identifier (attr1D parameter). This identifier can be used to call Attribute Interface to get
information about attributes of the element.

SAXLib_Attr_GetIndexByQName

Prototype:

Ulntl6 SAXLib_Attr_GetlIndexByQName(UIntl6 refNum, UInt32 attriID, Char*
gName)

Returns index in the attributes list for the attribute with specified qualified name (as appears in
the XML parsed data file).

Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_sStartElementFunc function from Content Handler interface.

e (in) gName Pointer to null-terminated character string with qualified attribute name
to look in the list.

Result: returns index of the attribute or OxFFFF if attribute was not found or in the case of any
error.

SAXLib_Attr_GetindexByNamespace

Prototype:

UIntl6é SAXLib_Attr_GetlndexByNamespace(UIntl6 refNum, UInt32 attrlD, Char*
uri, Char* localName)

Returns index in the attributes list for the attribute with specified namespace name (namespace
URI and local name).

Parameters:
e (in) refNum Library reference number.

16

e (in) attrlD Attribute interface ID provided by SAXLib during parsing to
CH_startElementFunc function from Content Handler interface.

e (in) uri Pointer to null-terminated character string with namespace URI for
the attribute to search.

e (in) localName Pointer to null-terminated character string with local name for the
attribute to search.

Result: returns index of the attribute or OxFFFF if attribute was not found or in the case of any
error.

SAXLib_Attr_GetLength

Prototype:
Ulntl6 SAXLib_Attr_GetLength(UIntl6 refNum, UInt32 attrliD)

Returns the number of attributes (attributes list length) for the currently parsed element.
Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_startElementFunc function from Content Handler interface.

Result: returns number of attributes or OxFFFF in the case of any error.

SAXLib_Attr_GetLocalName

Prototype:
Char* SAXLib_Attr_GetLocalName(UIntl6 refNum, UInt32 attriID, UIntl6 index)

Returns local name for the attribute with specified index.
Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_startElementFunc function from Content Handler interface.

e (in) index Attribute index to get local name. Attribute indexes are zero-based and
must be less or equal to the number of attributes in the list (returned by
SAXLib_Attr_GetLength function).

Result: pointer to null-terminated character string with local name of the attribute. This function
allocates memory for the name and it is application’s responsibility to free memory chunk
returned by this function. In the case of any error the function returns NULL.

SAXLib_Attr_GetQName

Prototype:
Char* SAXLib_Attr_GetQName(UIntl6 refNum, UInt32 attriD, UIntl6 index)

Returns qualified name of the attribute with specified index.
Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_sStartElementFunc function from Content Handler interface.

e (in) index Attribute index to get qualified name. Attribute indexes are zero-based
and must be less or equal to the number of attributes in the list (returned
by SAXLib_Attr_GetLength function).

17

Result: pointer to null-terminated character string with qualified name of the attribute. This
function allocates memory for the name and it is application’s responsibility to free memory
chunk returned by this function. In the case of any error the function returns NULL.

SAXLib_Attr_GetTypeByIndex

Prototype:
Char* SAXLib_Attr_GetTypeBylndex(UIntl6 refNum, UInt32 attriD, UIntl6
index)

Returns type of the attribute (if resolved) with specified index.

Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_sStartElementFunc function from Content Handler interface.

e (in) index Attribute index to get type name. Attribute indexes are zero-based and
must be less or equal to the number of attributes in the list (returned by
SAXLib_Attr_GetLength function).

Result: pointer to null-terminated character string with attribute type name. This function
allocates memory for the type name and it is application’s responsibility to free memory chunk
returned by this function. If attribute type was not resolved the default type (““CDATA”) is
returned. In the case of any error the function returns NULL.

SAXLib_Attr_GetTypeByQName

Prototype:
Char* SAXLib_Attr_GetTypeByQName(UIntl6 refNum, UInt32 attrlD, Char*
gName)

Returns type of the attribute (if resolved) with specified qualified name.

Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_startElementFunc function from Content Handler interface.

e (in) gName Pointer to null-terminated character string with qualified attribute name
to look in the list.

Result: pointer to null-terminated character string with attribute type name. This function
allocates memory for the type name and it is application’s responsibility to free memory chunk
returned by this function. If attribute type was not resolved the default type (““CDATA”) is
returned. If attribute with specified name was not found or in the case of any error the function
returns NULL.

SAXLib_Attr_GetTypeByNamespace

Prototype:
Char* SAXLib_Attr_GetTypeByNamespace(UIntl6 refNum, UInt32 attriD, Char*
uri, Char* localName)
Returns type of the attribute (if resolved) with specified namespace name (namespace URI and
local name).

Parameters:
e (in) refNum Library reference number.
e (in) attriD Attribute interface ID provided by SAXLib during parsing to

CH_startElementFunc function from Content Handler interface.

18

e (in) uri Pointer to null-terminated character string with namespace URI for
the attribute to search.

e (in) localName Pointer to null-terminated character string with local name for the
attribute to search.

Result: pointer to null-terminated character string with attribute type name. This function
allocates memory for the type name and it is application’s responsibility to free memory chunk
returned by this function. If attribute type was not resolved the default type (““CDATA”) is
returned. If attribute with specified name was not found or in the case of any error the function
returns NULL.

SAXLib_Attr_GetUri

Prototype:
Char* SAXLib_Attr_GetUri(UIntl6 refNum, UInt32 attriD, UIntl6 index)

Returns namespace URI for the attribute with specified index.
Parameters:
e (in) refNum Library reference number.
e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_sStartElementFunc function from Content Handler interface.

e (in) index Attribute index to get namespace URI. Attribute indexes are zero-based
and must be less or equal to the number of attributes in the list (returned
by SAXLib_Attr_GetLength function).

Result: pointer to null-terminated character string with namespace URI of the attribute. This
function allocates memory for the name and it is application’s responsibility to free memory
chunk returned by this function. In the case of any error the function returns NULL.

SAXLib_Attr_GetValueByIlndex

Prototype:

Char* SAXLib_Attr_GetValueBylndex(UIntl6 refNum, UInt32 attriID, UIntl6
index)

Returns value of the attribute with specified index.
Parameters:
e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_startElementFunc function from Content Handler interface.

e (in) index Attribute index to get value. Attribute indexes are zero-based and must
be less or equal to the number of attributes in the list (returned by
SAXLib_Attr_GetLength function).

Result: pointer to null-terminated character string with value of the attribute. This function
allocates memory for the value string and it is application’s responsibility to free memory chunk
returned by this function. In the case of any error the function returns NULL.

SAXLib_Attr_GetValueByQName

Prototype:

Char* SAXLib_Attr_GetValueByQName(UInt1l6 refNum, UInt32 attriID, Char*
gName)

Returns value of the attribute with specified qualified name.
Parameters:

19

e (in) refNum Library reference number.

e (in) attrID Attribute interface ID provided by SAXLib during parsing to
CH_sStartElementFunc function from Content Handler interface.
e (in) gName Pointer to null-terminated character string with qualified attribute name
to look in the list.
Result: pointer to null-terminated character string with value of the attribute. This function
allocates memory for the value string and it is application’s responsibility to free memory chunk
returned by this function. If attribute with specified name was not found or in the case of any
error the function returns NULL.

SAXLib_Attr_GetValueByNamespace

Prototype:

Char* SAXLib_Attr_GetValueByNamespace(UIntl6 refNum,UInt32 attriID,Char*
uri,Char* localName)

Returns value of the attribute with specified namespace name (namespace URI and local name).
Parameters:
e (in) refNum Library reference number.

e (in) attrlD Attribute interface ID provided by SAXLib during parsing to
CH_sStartElementFunc function from Content Handler interface.

e (in) uri Pointer to null-terminated character string with namespace URI for
the attribute to search.

e (in) localName Pointer to null-terminated character string with local name for the
attribute to search.

Result: pointer to null-terminated character string with value of the attribute. This function
allocates memory for the value string and it is application’s responsibility to free memory chunk
returned by this function. If attribute with specified name was not found or in the case of any
error the function returns NULL.

20

	Contents
	Introduction
	Data structures
	CharacterEncoding
	ContentHandler
	FileProvider

	Application-defined functions
	Interfaces
	Content Handler interface
	CH_StartDocumentFunc
	CH_EndDocumentFunc
	CH_StartElementFunc
	CH_EndElementFunc
	CH_StartPrefixMappingFunc
	CH_EndPrefixMappingFunc
	CH_CharactersFunc
	CH_IgnorableWhitespaceFunc
	CH_SkippedEntityFunc
	CH_ProcessingInstructionFunc
	CH_SetDocumentLocatorFunc

	File Provider interface
	FP_OpenFileFunc
	FP_GetFileBlockSizeFunc
	FP_ReadFileFunc
	FP_CloseFileFunc
	FP_SeekFileFunc
	FP_GetFileSizeFunc

	Interface functions
	Standard library functions
	SAXLibOpen
	SAXLibClose

	Common functions
	SAXLibSetContentHandler
	SAXLibSetFileProvider
	SAXLibParse
	SAXLibGetCurrentState
	SAXLibParseResume

	Document Locator interface functions
	SAXLib_DL_GetSystemId
	SAXLib_DL_GetPublicId
	SAXLib_DL_GetColumnNumber
	SAXLib_DL_GetLineNumber

	Attribute interface functions
	SAXLib_Attr_GetIndexByQName
	SAXLib_Attr_GetIndexByNamespace
	SAXLib_Attr_GetLength
	SAXLib_Attr_GetLocalName
	SAXLib_Attr_GetQName
	SAXLib_Attr_GetTypeByIndex
	SAXLib_Attr_GetTypeByQName
	SAXLib_Attr_GetTypeByNamespace
	SAXLib_Attr_GetUri
	SAXLib_Attr_GetValueByIndex
	SAXLib_Attr_GetValueByQName
	SAXLib_Attr_GetValueByNamespace

