
5D]RU��'HYHORSHU�&RPSDQLRQ
Copyright © 2002-2003 Tilo Christ

Last changed 2003-05-31

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHAN-
TABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE1.

1 This is the “MIT” license. See www.opensource.org.

Table of Contents
The Razor! Framework..3
The nature of a Framework..3

The Hollywood Principle...3
Hotspots..4

Application development with the Razor! framework...5
The Hollywood principle applies..5
Example Project..5

Framework Control Flow...5
Application Startup..5
Application execution..6

Framework anatomy...7
Primordial Soup & Class Presentation..7
Class ActionEngine & Screens...7

Display Management..8
The display components...8
Coordinate systems..9
Logical vs. Physical Coordinate systems..9
Display depth...9
Class Display...9
Class Canvas..10
Class AnimFrames, Sprites & SpriteGroups...10

Optimizing for Maximum Performance...11
Make sure you’ve got a problem..11
Establish the Facts...11
Designing For Speed..11
Extra Performance Hints..12

Appendix A: Installation and Compilation..13
Prerequisites..13
Razor! Directory Tree..14
Build Tool Specifics...15
Setting up a new project..20

Appendix B: Preparing artwork (bitmap resources)..21
Bitmaps...21
Bitmap Metadata...22
Using PilRC...23

The Razor! Framework
Razor! is a highly modular, easy to use, embeddable presentation engine for Palm Powered™ devices. It
makes it easier for developers to create multimedia software, such as animations and games. The engine
is not a ready-to-use executable. Instead it comes as a bundle of C++ source files which need to be
customized, compiled and linked with your own code2.

Its main features include

Timing + Flow control - Razor! ensures the correct order of all actions, and their precise timing.

Canvas management - Razor! manages the drawing area (aka Canvas). It provides double buffering
with optimized copying.

Sprite engine - Razor! can draw sprites (small bitmaps with transparent parts). It manages their
position, shown/hidden state, etc.

Sound engine - Razor! can play music (faking three voices), and sound FX.

Input management - Razor! can detect the status of control devices (rocker switch, 5-Way Navigator,
buttons), and direct other events to your app.

Razor! is written in C++ and is delivered as a so-called hybrid framework.

The nature of a Framework
It is important to understand the nature of a framework, especially in comparison to a class library.

The Hollywood Principle
Frameworks operate by the „Hollywood principle“ (don't call us, we'll call you). That means, the
framework controls the entire flow of your application's execution, calling your code in a few well-
defined places. When you are using a class library, it is just the other way around: You control the flow,
and make calls into the library.

A framework is harder to design than a class library, but provided that your application fits the domain
of the framework, it can save you a lot of work, and provide results of superior quality, because you are
not only using proven code, but also proven patterns for application design.

In reality, you will rarely find a pure framework. Most frameworks are also accompanied by a class
library. These are called hybrid frameworks.

2 Some users have successfully ripped the code apart to incorporate parts of it into their C programs. The license permits
this kind of use.

Hotspots
The places in your code, which are invoked by the framework, are called hotspots. These are the places
where you are given the chance to customize the behavior of the resulting application. The control flow
between the invocations to your code is defined entirely by the framework, and cannot be modified by
you.

Application development with the Razor! framework

The Hollywood principle applies
As has been explained in “The nature of a Framework“, the behavior of an application which is based on
a framework is defined by the code which you provide to the framework for invocation during program
execution.

This fully applies to the Razor! framework. The entire main application, including the startup code, the
event loop, all the decisions about control flow, are provided by the Razor! framework. The framework
will make calls into code which you will have to provide. This is described in detail in the chapter on
“Framework Control Flow”.

Example Project
Look at the SimpleDemo project in the Projects/SimpleDemo folder for a working project.
Having this project handy while reading this companion is probably helpful.

If you want to try out things as you read along, you can either manipulate the SimpleDemo project, or
create your own new project, as described in Appendix A. Install and build instructions are also in this
Appendix.

API Documentation
The API documentation is contained in a separate document. The API documentation and this
Developer Companion document complement each other. This document provides a high-level
conceptual overview, whereas the API documentation provides the details of the API, but hardly
explains any concepts.

Framework Control Flow
The framework executes as described in this chapter.

Application Startup
The following sequence is executed every time an application based on Razor! is started.

1. Low-level setup

The framework starts up just like any Palm OS application. It determines the type of device, sets
up an event handling loop, ...

See “Framework anatomy: Primordial Soup & Class Presentation”

2. Display setup

The bitmap metadata is read and the physical display is setup

See “Appendix B” and “Class Display”

3. ActionEngine setup

Your MyActionEngine class is instantiated through its constructor, and then initialized
through its init() operation.

See “ Framework anatomy: Class ActionEngine & Screens”

4. Begin Application Excecution

Application execution
The application is executed until a return to the launcher is requested by the user. The framework
supports this automatically through its event handling.

1. Screen requested from ActionEngine

ActionEngine::getCurrentScreen() is invoked.

See “ Framework anatomy: Class ActionEngine & Screens”

2. Screen executed

See “ Screen Execution”

3. Next screen requested from ActionEngine

ActionEngine::getNextScreen() is invoked.

See “ Framework anatomy: Class ActionEngine & Screens”

4. Go to step 2, or exit the application

Screen Excecution
The screen is executed until it indicates that it is finished. The execution loop runs at a controlled speed,
making sure the application is making a fluid impression on the user3.

1. Screen queried for display properties and viewport properties

The screen is first queried for its expectations about the physical display. The framework then
sets up the display canvas. After that it queries the screen for its expectations about the viewport.
The calculations for the viewport can use information from the display canvas. The framework
then sets up the viewport canvas.

See “ Display Management”

2. Screen initialized

Screen::init is invoked. This is a good place to set up the internal state of the screen and to
prepare resources for use during the paint phase.

3. Screen set to next period

Screen::nextPeriod is invoked to ask the screen to advance its state to the next period.
This could include moving sprites, calculating computer AI, etc.

Do not draw anything during this phase, just advance the state and return.

4. Screen contents painted

3 Temporal precision is the most important factor in creating the illusion of smooth execution of a game. Much more so
than spatial precision (i.e. how many pixels the objects move per timestep).

Screen::drawBackground and Screen::drawAction is invoked to draw to the
viewport canvas.

Screen::drawFixedOverlays and Screen:drawDynamicOverlays is invoked to
draw to the overlay canvas.

The background and the fixed overlays are only drawn when their respective canvasses are
considered in need of a redraw.

Never change the internal state of the screen in this phase. Only draw the visual representation
of the current state of the screen, then return.

See “ Display Management”

5. Go to “ Screen set to next period”

Framework anatomy

Primordial Soup & Class Presentation
Deep in its bowels, Razor! is an ordinary Palm OS application, of course. It has a PilotMain() and
an event loop just like every other application. These are contained in a file called Starter.cpp, and
do not belong to any class. Starter delegates the actual control flow to a class called Presentation.

Class ActionEngine & Screens
The Presentation expects your code to be presented in child-classes of two framework classes called
ActionEngine and Screen. These two classes contain all the hotspots that will be invoked during
execution.

The child-class of ActionEngine needs to be called MyActionEngine. It is responsible for
instantiating the Screens and presenting them in a proper order. It is also responsible for saving and
restoring the application’s state between invocations.

The Screens are the distinct sections within the game. There could be a title screen, a highscore screen, a
configuration screen, a game screen, a bonus level screen, etc.

Example
In the SimpleDemo example you can see a class definition for MyActionEngine, and 3 screen classes,
called FlyingChickenScreen, RectangleScreen, and FlatshadeScreen.

MyActionEngine presents the 3 screens in alternating order until you exit the application.

Display Management

The display components
The display is divided into two distinct sections. The viewport and the overlay areas.

The viewport is a double-buffered section in the middle of the display. Everything outside the viewport
is part of the overlay area. It is perfectly valid to specify the viewport to cover the entire screen.
Specifying a smaller viewport will mostly give you more performance, and save some memory.

The viewport contains a background and action elements (Sprites), which are drawn over the
background. Since the sprites can store and restore the section of the background which they cover, the
background only needs to be painted once when it changes, whereas the sprites are typically painted
during every frame of animation.

The overlay area is made up of static and dynamic parts. Static (fixed) parts of the overlay are those
that never change, such as the colored backdrops, and the words "Score" and "Lives". Dynamic parts
are those parts that change their appearance, such as the actual score, or the actual number of lives.
Even though the overlay area is not double-buffered, it is still possible to manipulate it in a limited way,
without producing visible flicker.

Coordinate systems
The display uses two different coordinate systems. One for the viewport, and one for the overlay area.
The (0,0) coordinate of the viewport is in the topleft edge of the viewport, which is not necessarily
identical to the topleft edge of the physical display. The (0,0) coordinate of the overlay area is at the
topleft edge of the physical display.

���������
	���
���	�������������	�������� �"!$#��%� ��&�!('

You have to use viewport coordinates when you are drawing the background and the action
(Screen::drawBackground, Screen::drawAction). You have to use overlay coordinates
when you are drawing overlays (Screen::drawFixedOverlays,
Screen::drawDynamicOverlays).

Logical vs. Physical Coordinate systems
There is a wide variety of devices on the market. Older ones are lores, newer ones are hires. In order to
make it easier to develop applications that support both families of devices, the framework is making a
distinction between the physical resolution of the display, and the logical coordinate-system that you use
to draw on it. The physical resolution is set during application startup and cannot be changed
subsequently4. The logical coordinate system however can be specified on a per-Screen basis. There are
two modes:

1. STANDARD (the default): The logical coordinate system emulates a lo-res device, independent from
the actual physical coordinate system. On hires devices you can still use hires bitmaps to make your
application look extra neat, but you can only place them at lo-res coordinates.

2. NATIVE: The logical coordinate system is identical to the physical coordinate system. It is up to
your application to deal with any display size that it may encounter.

This is very similar to the mode of operation of Palm OS 5, but is made available on all devices,
including the OS 4 based Sony Clies.

See Canvas::CoordSystem and Screen::getDisplayProperties to find out how to
override the default.

Display depth
The entire display has a depth in bits per pixel (bpp). Depths 1, 2, and 4 bpp have a grayscale palette.
Depths 8bpp and higher have a color palette. The display depth is determined once during the
initialization of the display (see Class Display) and cannot be changed during runtime.

Class Display
The Display class is responsible for setting up the physical display. This includes setting the resolution,
and the display depth. It also establishes the double buffer for the viewport. It can provide access to all
display properties, most importantly the display depth in bpp.

Physical display setup is done based on metadata that you have to provide along with your bitmap
resources. See Appendix B for details.

Class Canvas
The Canvas is an area on which you can draw. It can be a representation of the physical display, or be
offscreen5. The Canvas has both a logical size (width/height), as well as a physical size (cols/rows). This
distinction is important if you wish to access the bitmap memory of the Canvas directly.

4 Most devices would not support this, and those that do tend to flicker annoyingly.
5 In the current implementation, the “ viewport” is an offscreen Canvas, whereas the “ overlay” area is a Canvas that is

directly linked to the physical screen.

The Canvas supports a variety of primitive graphics operations which are commonly needed for game
development. You can either invoke those operations directly from a Screen’s drawing operations, or
you can use classes which wrapper invocations. The most prominent one being the Sprite class.

Drawing transparent bitmaps

Drawing non-transparent (“ solid”) bitmaps

Drawing filled rectangles

Drawing text

Drawing filled polygons

While these might be enough for most games, you will probably miss some operations. You can use the
OS to draw to the Canvas, and you can also access the bitmap of the viewport canvas directly6. See
“ Direct Access to Canvas Memory” .

Class AnimFrames, Sprites & SpriteGroups
Sprites are certainly the most important element of a game. They are well-supported in this framework.
Sprites have a position, a visibility state, and a currently displayed frame of animation.

AnimFrames manage the frames of an animation. Several sprites can have a reference to the same
instance of AnimFrames, which can save a considerable amount of resources, if you have lots of
identical sprites on the screen.

Example
If the aliens attack with 5 motherships, and 95 UFOs, you would have two AnimFrames, one containing
the frames of the mothership, the other containing the frames of a UFO. You would then instantiate 100
Sprites, and let 5 of these reference the AnimFrames of the mothership, and let the other 95 point to the
AnimFrames of the UFO. Each of the 100 sprites would have a completely independent position, and
each one could show a different frame of its associated AnimFrame.

SpriteGroups are used to more efficiently handle large numbers of identical sprites, i.e. Sprites which
use the same AnimFrame. Creating a SpriteGroup of 100 sprites is a lot more memory efficient than
creating 100 separate instances of the Sprite class. Entire SpriteGroups can be drawn with a single
command.

Example continued...
Instead of creating 100 sprites for the alien attack fleet, you should create 2 SpriteGroups, one
containing the 5 motherships, the other containing the 95 UFOs.

Direct Access to Canvas Memory
Many interesting graphics effects are not provided directly by the drawing operations of the Canvas
class. But you can achieve anything you want by directly accessing the memory that represents the
viewport7 canvas. Such drawing code is therefore invoked during the Screen::drawAction operation.

The canvas memory is organized like most generic framebuffers. For a display depth of n bits per pixel,
the first n bits of the screen are the topleft pixel. The following n bits are the pixel to the right of that
pixel, and so on.

6 If you have written an interesting graphics routine you are invited to contribute it (hint, hint).
7 Directly accessing the overlay display canvas is a big no-no, and will lead to crashes on many devices.

The Display class contains information about the depth in bpp (Display::depth). This depth is the
same for all canvases. The Canvas class contains information about size (both physical and logical), and
memory location (Canvas::drawBits).

You can access the memory using any combination of C++ and assembly code that you want. Make sure
you are setting the dirty rectangle properly in order to see the results.

Optimizing for Maximum Performance

Make sure you’ve got a problem
Do not optimize performance unless you actually have a performance problem.

Play your game. If it’s not sluggish why optimize it? Always remember: Performance optimizations are a
great way to introduce bugs.

Establish the Facts
Use the profiling version of the POSE emulator to obtain reliable profiling data about your application.
Do not take guesses! They will be wrong. Keep a snapshot of this data. This will be your “ baseline” . If
you want you can visualize it using the “ ProView” tool from www.tilo-christ.de/proview. Establish a
performance goal. Pinpoint those 20% of code that eat up 80% of the execution time. Focus on those.
Optimize your application until you have reached the performance goal. After every step of optimization
you should obtain new profiling data to make sure that performance has actually improved.

Then stop optimizing, and continue to develop more fun features for the game!

Designing For Speed
While Razor! places no restrictions on you while you design your application, sticking to certain
restrictions and conventions will allow it to operate with greatly improved speed.

Sprites

Make the width of your sprites a multiple of 8

Make the x-position of your sprites a multiple of 2

Use 8bpp for color, and 4bpp for greyscale (Caution: 4bpp greyscale is only available on devices
with OS3.5+ and an EZ CPU)

Create SpriteGroups instead of single Sprites. This will reduce memory fragmentation.

Graphics primitives

Make the width of rectangles a multiple of 8

Make the x-position of the left edge of rectangles a multiple of 2

Reduce drawing power

Only use the Canvas draw operations for drawing. This will ensure you are not using slow OS
routines, but the most optimized routines.

Don't redraw everything during each frame. Try to place objects to the background, where they will
remain unharmed by sprites.

Make the viewport as small as possible. Make use of overlays.

Try to avoid transparency.

Extra Performance Hints
Don’t play music during gameplay.

Appendix A: Installation and Compilation

Prerequisites

Developer
Using Razor! requires C++ skills and a basic understanding of Palm OS programming. It will in no way
enable you to just “ design” a game, and then input it through some kind of high level tools, like some
game development environments on the PC allow you to do. But, as one user recently noted:

***** [Jan 11, 2003] by jbrown
This is a really good toolkit. If you are a beginner with some
so-so programming skills you can learn it really fast. Much
easier than learning the details of the Palm SDK.

Build tool

Codewarrior 6, or higher

or

PRC-Tools 2.2 (http://sourceforge.net/projects/prc-tools/)

PilRC 2.9p10 or higher is highly recommeded, and is required to compile the example application.

SDKs
For build tool specific installation instructions for the various SDKs consult the chapter on Build Tool
Specifics.

Palm OS SDK

SDK 5.0 is recommeded8. SDK 4.0 Update 1 is still supported, but NOT recommended.

The SDK version needs to be at least the OS version of the OS on the target devices but may well be
higher. You can use SDK 5.0 to target anything from OS 3.0 to the latest OS 5 devices.

Third Party SDKs

An additional Sony SDK is required if your compiled software shall work perfectly on pre-OS 5 Sony
Clie devices. The SDK can be downloaded from
http://www.cliedeveloper.com/develop_tool/sdk_50.html.

The Five Way SDK is required if your software shall support the 5-Way Navigator on the Tungsten T.
The SDK can be downloaded from http://www.palm.com or through a membership in Palm's PluggedIn
program.

Razor! Distribution
You can unpack the Razor! Archive to an arbitrary directory. Make sure path names and case of file
names are preserved. Use WinZip 8.x on Windows, or “ unzip -U” on Linux.

8 Not using SDK 5.0 will bereave you of Hires support, which would be a pity.

Razor! Directory Tree
The following path specifications are relative to the directory where you unpacked the Razor!
distribution file. Several projects can be developed within the same directory tree if you choose a
different project name for each one. The project name of the sample project is “ SimpleDemo” .

Razor framework code
Razor/Src

Should not be touched unless you have very specific needs which are not filled by the unmodified
framework.

Razor framework resources
Razor/Rsc

Should not be touched.

Project specific code
Razor/Projects/<Project name>/Src

Application code that you will need to write.

Project specific resources
Razor/Projects/<Project name>/Rsc

Application specific resources that you will need to provide. Consists of application icon, menus,
“ About” dialog, music, sound fx, and most importantly the bitmap resources.

Project specific framework config file
Razor/Projects/<Project name>/Src/Customization.h

Determines some very basic aspects of the framework's configuration for the project, such as the SDKs
that are available for compilation, and whether some official Palm programming guidelines may be
ignored.

Build tool specific project file
Razor/Projects/<Project name>

Depending on your build tool this can either be a GNU Makefile for prc-tools, or a Codewarrior project
file.

Build Tool Specifics

CW 6 (Lite)
You should install the following extra software:

All CW 6 updates from Metrowerks (essential)

SDK 5.0 for Codewarrior (essential)

Sony SDK (recommeded but not essential)

PilRC plugin 2.9p10b for Codewarrior from www.calliopeinc.com/pilrcplugin.html (essential for the
SimpleDemo project, and strongly recommeded for your own work)

Palm SDK 5.0

SDK 5.0 is not part of the CW6 package. In order to get SDK 5.0 to work with CW6, you will have to
download the SDK 5.0 for Codewarrior from Palm Source (www.palmsource.com), then follow the
instructions for a manual installation that come with the SDK. Make sure you install the PalmRez post-
linker from the SDK. Otherwise the PilRC plugin might crash the IDE.

Third Party SDKs

In order to guarantee faster success without having to install several third-party SDKs first, the default
for the framework is to compile with the Palm SDK 5.0 only, and not to support the third-party features
(Clie, 5 Way Navigator). Activate support by doing the following:

Clie support:

Obtain the Sony SDK

Install Sony SDK to the “Sony SDK Support” subdirectory in your CW installation.

In Src/CWInstalledSDKs.h. Specify #define SUPPORT_CLIE

Five Way support:

Obtain the Five Way SDK

Copy the file PalmChars.h into your SDK 5.0 installation, e.g. to
Incs/Core/System/PalmChars.h

In Src/CWInstalledSDKs.h, specify #define SUPPORT_FIVEWAY.

Building and Running

Load the project file CW6SDK50.mcp select the 'Debug' target and build. If this works you can also try
the 'Release' target.

Caution:

The optimization options for the Release target have been set to Level 2. Higher levels optimize the
framework to death.

Due to bugs in the current version of the PilRC plugin, it is currently not possible to build working hires
applications with this environment.

CW 7
“ Just thought you might want to know that it works just fine with CW7, although I did have a problem
when I unpacked the new source over an old installation. Maybe a README1ST file in the distribution
warning that you should install clean ? Also, does turning off the postlinker make any difference? All I
did to get going was open the project (CW6SDK50.mcp), unselect the sony sdk (because it isn't
installed) and hit the make button and everything was fine. “

CW 8
1. Open the project (CW9Project.mcp)
2. Say OK to the dialog that warns that the project is for a newer version of CW
3. Set the linker to "Macintosh 68K" and set the Post-linker to "PalmRez Post Linker" for the Debug
and Release targets
4. Build the project

CW 9
Your environment already comes with all required tools and SDKs.

You might want to install the following optional software:

Latest update patches for CW 9 (recommeded but not essential)

Palm Five Way SDK (recommeded but not essential)

Third Party SDKs

In order to guarantee faster success without having to install several third-party SDKs first, the default
for the framework is to compile with the Palm SDK 5.0 only, and not to support some of the third-party
features (Five Way Navigator). Activate support by doing the following:

Clie support

This SDK is already included with CW9, but support for it is not enabled by default, because most of the
other build tools do not include this SDK.

In Src/CWInstalledSDKs.h, specify #define SUPPORT_CLIE

Five Way support:

Obtain the Five Way SDK.

Copy the file PalmChars.h into your SDK 5.0 installation at Palm OS
Support/Incs/Core/System/PalmChars.h

In Src/CWInstalledSDKs.h, specify #define SUPPORT_FIVEWAY.

Building and Running

Load the CW9Project.mcp project file. The IDE might complain about a missing directory. Ignore
this message. Choose one of the targets “ Debug” , “ Debug-Hires” , “ Release” , or “ Release-Hires” . Build
the target. Use the CW IDE debugger or a real device to run the application.

PRC-Tools 2.2
You should install the following extra software:

SDK 5.0 for PRC-Tools (essential).

Sony SDK (recommeded but not essential).

Palm Five Way SDK (recommeded but not essential)

PilRC 2.9p10 (essential). A suitable version for use with Cygwin can be downloaded from
http://sourceforge.net/projects/razor-engine/ . Read the release notes for installation instructions.

Palm SDK 5.0

Make sure you obtain the latest version for PRC-Tools(!) which includes the proper Glue libraries from
www.palmsource.com. If you have freshly installed SDK 5.0 make sure you run “ palmdev-prep”
afterwards to let PRC-Tools know about the existence of the new SDK. Palmdev-prep should output a
message stating that it made SDK 5 your default SDK.

Third Party SDKs

In order to guarantee faster success without having to install several third-party SDKs first, the default
for the framework is to compile with the Palm SDK 5.0 only, and not to support the third-party features
(Clie, 5 Way Navigator). Activate support by doing the following:

1. Clie support

Get the SDK. Make sure you convert it to work with PRC-Tools using the instructions from
www.falch.net.

In Makefile.incl: Set “SONYSDK” to “ yes”

2. Five way support:

Get the SDK. Copy PalmChars.h to /PalmDev/FiveWaySDK/PalmChars.h.

In Makefile.incl: Set “FIVEWAYSDK” to “ yes”

Building and Running

Your /PalmDev directory tree with the SDKs installed should look like this:

Change to the Projects/SimpleDemo directory and run ’make’. Run the resulting PRC files.

Falch.net
Make sure your version of Falch.net is based on PRC-Tools 2.2. Also, since this is essentially a PRC-
Tools environment the instructions regarding PRC-Tools might help in case of problems.

1. Make a new Framework project with DeveloperStudio. Name it what you want, but all of the other
settings don’t really matter.
2. Go into the directory that devstudio created for the new project. Delete all files except for the .FNP
file.
3. Go back to devstudio and remove all of the files from the project (right click on the file, press R on
the keyboard)
4. Go into the SimpleDemo folder that comes with Razor! and copy all of the files into your new project
directory. You can delete the codewarrior directories, etc
5. Go into the project properties, and click Advanced... uncheck the first three check boxes (for building
a makefile, def file, etc). MAKE SURE THESE ARE UNCHECKED. Click ok
6. Right click on the project name in the Project Explorer and click add existing file... Find the makefile
that you moved over from simpledemo
7. Do the same for the .cpp and .h files moved over from simpledemo under Source and Headers, and
the resource files under Resources
8. Click compile.... it should work fine.
9. If you want to add files to the project, you have to edit the makefile by hand and add a file to the
compile list (I couldn’t get falch.net working with its automatically generated makefiles, so I just have it
use a custom makefile)

Setting up a new project
In order to develop a new application with Razor!, you have to

Set up a new project in the Projects subdirectory. The easiest way to do that is to copy the
SimpleDemo project into a new folder.

Create your resources (bitmaps, music, menus, icons)

Create your Screens

Create your MyActionEngine

Build and run

TBD: Write sth. Really helpful :-(

Appendix B: Preparing artwork (bitmap resources)

Bitmaps
Bitmaps are grayscale or colorized images, that will be blitted to the screen. They are always rectangular
in shape, but some parts of them may be declared as transparent.

Bitmaps have two relevant properties: Color-depth and resolution. If you wish to support a specific
device you need to make sure that your application is equipped with the necessary bitmap resources for
that device.

Example
Supporting a Palm Vx, which is a 4bpp lo-res device requires 4bpp lo-res bitmaps (2bpp and 1bpp could
also be used).

Supporting a Sony Clie, which is an 8bpp hires device requires 8bpp hires bitmaps.

You can place several variations of the same bitmap into your application, in order to support multiple
devices with it.

Bitmap Families
Variations of the same bitmap are grouped together into a “ bitmap family” . Family members may vary in
resolution and bit depth, but not in size.

Bitmap Family Identifiers

Each bitmap family is identified by a numerical identifier. The identifier identifies the entire family. There
is no way to address a single member of a family.

Family layouts

The following table lists all currently supported bitmap family layouts and their consequences.

It is recommeded you build at least two completely separate builds of your application. One containing
only lo-res families for all lo-res pre-OS5 devices, and one “ mixed family” build for all hires devices, and
maybe the lo-res color devices.

Example
For a build that supports all lo-res devices you can create bitmap families that contain 2bpp, 4bpp, 8bpp
lo-res representations of your bitmaps.

For a build that supports all hires devices you can create bitmap families that contain 8bpp hires
representations of your bitmaps. For technical reasons, these bitmap families will also have to contain a
lo-res representation of your bitmaps. You could either choose 1bpp lo-res images to keep application
size small, or you could use color lo-res images, in order to make this a build for all color devices (both
lo-res and hires).

Layout Remarks
Lo-res family only (bitmaps of
density 1)

Will work on all devices, but will be lo-res only

Mixed family (bitmaps of density
1, and density 2)

Will work on lo-res devices, Sony Clie, and all OS5 devices.

Might be problematic because of bitmap family size!

Transparency
Transparent bitmaps and Sprites require the definition of a mask for each bitmap. The mask defines
which parts of the bitmap shall be transparent. A white pixel in the mask means transparent, a black pixel
means opaque.

It is highly important that masks are only declared with a pixel depth of 1bpp. Otherwise strange color
effects may occur (and it would be a waste of resources as well).

Considerations

Bitmap Family size

It is important that none of the bitmap families you define are larger than 64k. This is due to a limitation
in Palm OS, that cannot be overcome by this framework.

Compression

Some versions of Palm OS do not support compressed bitmaps properly. Do not use compressed 1bpp
and 2bpp lo-res bitmaps for opaque drawing. Transparent bitmaps are not affected.

Background color

Transparency is currently based on a mask. Unfortunately, the masking can fail on older devices, if the
masked out area of the bitmap is not white. You should therefore make sure that your 1bpp and 2bpp
transparent bitmaps use white as their background color.

In upcoming versions, Razor! might honor the transparent color of a bitmap - as specified in the bitmap
definition - as an alternative to masks. For your color bitmaps you might consider using a color in the
transparent area that you are not using elsewhere in the image.

Bitmap Metadata
It would be hard for the framework to figure out reliably which display depths and resolutions you wish
to support with your bitmap resources. You will therefore have to provide metadata along with your
bitmaps. Metadata is contained within a resource record. It contains several density/depth pairs. The
framework will iterate over these pairs during application startup and setup the display for the first pair
that can be used on this device.

Example
You have specified (hires/8bpp, lores/8bpp, lores/2bpp) in your metadata.. The device is a Palm Vx
(lores/4bpp). During application startup, the framework will dismiss the first two pairs, because the
device cannot support them, and will then switch the display to a depth of 2bpp.

Using PilRC
PilRC is the recommended tool for the preparation of bitmap resources. You can use Constructor from
the SDK as well, but the process of turning existing artwork into resources is much more streamlined
with PilRC.

Artwork can be created using any paint program that can output the BMP image format. These BMP
files are then turned into resources for Razor! using the PilRC-tool9.

9 PilRC comes bundled with Codewarrior 8, or higher, and can be obtained separately from http://www.ardiri.com

PilRC is provided with an input file10 that controls how resources are created from the BMP images.

Example for PilRC 2.9 before 2.9p5
Versions of PilRC 2.9 before 2.9p5 can only create bitmap families with density 1. That means lo-res
families, and hires families with density 1. This is limiting in that it will not allow you to create
applications that make use of high resolution graphics for OS5 devices. It is recommended that you
upgrade to the latest patched PilRC 2.911.

Look at the bitmaps.rcp file that comes with the SimpleDemo example.

Bitmap metadata

Metadata comes in pairs of density and depth indicators. The end of the data is indicated by two 0x00
bytes. The resource type is ’Tbmt’ (Bitmap Meta), the ID is 1000. The best modes should come first,
since Razor! will pick the first mode that is applicable on the given device.

1. The density indicator for the resources

Value 0x01 means lo-res (density 1) resources

Value 0x02 means hires (density 2) resources

2. The depth indicator for the resources

Value is the depth in bpp, eg. 0x01 = 1bpp, 0x10 = 16bpp

HEX "Tbmt" ID 1000

 0x01 0x08

 0x01 0x04

 0x01 0x02

 0x00 0x00

Bitmap families

A bitmap family is declared through a BITMAPFAMILY statement. Each of these will prepare a single
bitmap family with a resource ID and associated images for each supported display depth.

The syntax is:

BITMAPFAMILY ID <resource id> "<1bpp BMP file>" "<2bpp BMP file>" "<4bpp BMP
file>" "<8bpp BMP file>" COMPRESS

The filenames may either be specified, or left empty, if that display depth shall not be supported by your
game. You may specify the same file for several of the display depths. This will cause PilRC to run it
through a crude color mapping for each depth, which may or may not be satisfactory.

You can also create masks with BITMAPFAMILY. Make sure you specify only a single filename for the
1bpp depth, and leave the other filenames empty.

Syntax:

BITMAPFAMILY ID <ID> "<B/W mask BMP file>" "" "" "" COMPRESS

10 The usual file extension is .rcp
11 Version 2.9p10 at the time of this writing

Example for PilRC 2.9p5 and later
These versions of PilRC allow you to create bitmap resources for all Palm devices, including the very
latest OS5 devices.

Look at the hiresbitmaps.rcp file that comes with the SimpleDemo example.

TBD: Give more detailed instructions

