
DOM XML Library for Palm OS

Version 1.1.5
Copyright © 2003-2006 PDADevelopers.com

DOM XML Library for Palm OS Page 2

DOM XML Library for Palm OS
Table of Contents

Introduction _____________________________________ 3

Features __ 3

General Notes ____________________________________ 3

Beginners Tutorial_________________________________ 4
Creating a new XML DOM Tree by Parsing a Text________________________ 4
Creating a new XML DOM Tree by Inserting Nodes ______________________ 5

Main Routines ____________________________________ 6

Navigation Routines _______________________________ 7

Error routines ____________________________________ 9

Node Information Routines_________________________ 10

Edition Routines _________________________________ 12

DOM XML Library for Palm OS Page 3

Introduction
This is a lightweight library designed for C/C++ developers who needs to manage
XML documents consuming as little resources as possible.

Features
- Simplified DOM-style parser.
- Pure C library.
- C++ Object Wrapper Interface included (class Wrapper).
- Traverse XML documents using a similar DOM syntax.
- Search children and attributes by name.
- Modify/Write capabilities.

Limitations
- No DTD or XML-Schema validation is made.
- XML is not strictly checked.
- 64KB capacity for the XML Document text (Palm OS limitation).
- !DOCTYPE, ENTITY, NOTATION not fully parsed.
- XPath notation no implemented.

Coming Soon Features

- !DOCTYPE fully parsed, including ENTITY, NOTATION

General Notes
This library assumes that the input document has a valid format. This means that if
the format is not valid, you can obtain unpredictable result because the error can or
cannot be detected. If the error is detected document parsing is aborted, FALSE is
returned and DOM tree isn’t created. Otherwise you will obtain a DOM tree but its
content will be not representative.

All pointers returned by this library are managed by the library and must not be
explicitly released.
All nodes created from the document tree will be released when you execute
xml_release or xml_deleteFreeNodes so you are free to ignore internal node
references and release them with these two functions.

DOM XML Library for Palm OS Page 4

Beginners Tutorial

Creating a new XML DOM Tree by Parsing a Text
Let’s suppose you have a char *source string containing the text representation of
an XML document, and you want to parse it to create the DOM Tree representation of
the document. Let’s suppose the text contains this:

<?xml version="1.0"?>
<!--Clients example-->
<rows recordset="clients">

<record id="1">
<name>Bill Gates</name>

</record>
</rows>

In order to create the tree, you will need first to define the variable that will
reference to the root node of the document, and initialize it:

HXML h = xml_create();

Next, you will need to call the parsing routine:

xml_processDocument(h, source);

At this point, the XML DOM tree is already created. Now you can navigate the
structure using the utility functions. For example, lets get the first node and print the
number of siblings:

XMLNode rows = xml_getElementsByTagName(xml_getRoot(h),"rows");
if (rows) {
 print("Recordset : ");
 println(xml_getAttribute(rows, "recordset", valueTemp, valueTempS));

 print("RecordCount : ");
 println(xml_childCount(rows));
}

We also loop through the node structure:

XMLNode record = xml_firstChild(rows);
while (record){
 println("----------------------------------- -");
 print("Record id : ");
 println(xml_getAttribute(record, "id", valueTemp, valueTempSize));

 print("name : ");

println(xml_text(xml_getElementsByTagName(record, "name"),
 valueTemp, valueTempSize));

record = xml_nextSibling(record);

}

Finally, don’t forget to release the document:

xml_release(h);

DOM XML Library for Palm OS Page 5

Creating a new XML DOM Tree by Inserting Nodes
First, you must define the variables that will hold your information:

char *buffer = sampleBuffer;
HXML h = xml_create();
XMLNode root;

Then, you can initialize the root element, which will become the handle of the main
XML DOM tree representation:

root = xml_createRoot(h);

Next, you can start adding your tree, node by node. We will construct the following
(extremely simple) XML document:

<?xml version="1.0"?>
<!--Clients example-->
<rows recordset="clients">

<record id="1">
<name>Bill Gates</name>

</record>
</rows>

xml_appendChild(root, xml_createProcessingInstruction(h));
xml_appendChild(root, xml_createComment(h, "Clients example"));

// Create rows node and initialize attributes
XMLNode rows = xml_createElement(h, "rows");
xml_appendChild(root, rows);
xml_appendAttribute(rows, xml_createAttribute(h, "recordset","clients"));

// Create record node and initialize attributes
XMLNode record = xml_createElement(h, "record");
xml_appendChild(rows, record);
xml_appendAttribute(record, xml_createAttribute(h, "id", 1));

// Create name node and initialize attributes
XMLNode address = xml_createElement(h, "name");
xml_appendChild(record, name);
xml_appendChild(name, xml_createTextNode(h, “Bill Gates”));

Congratulations! Now we have the document ready, referenced by the h handle. In
case you want to convert it to string (for storing or sending through any
communication channel) you can call the conversion routine:

xml_toXML(h, buffer, SAMPLE_BUFFER_SIZE);

Finally, don’t forget to release the document:

xml_release(h);

DOM XML Library for Palm OS Page 6

Main Routines
HXML xml_create()
This function creates a new XMLParser and returns a handle to it. You must call
xml_release with the handle returned by xml_create to release all the memory
allocated by the parser.
There are no limits in the number of parsers you can create.

void xml_release(HXML h)
Release the XMLParser pointed by h. This function does not release the memory
allocated by the document text passed as parameter in the xml_processDocument
function, so you must free the memory on your own. All the XMLNodes obtained
from h become invalid references.

char* xml_getDocument(HXML h)
Return a pointer to the Document text.

BOOL xml_processDocument(HXML h, char *XMLDoc)
Parses the document XMLDoc. XMLDoc is an ASCII null terminated string
containing the XML content to parse. Returns TRUE if the document was successfully
processed and FALSE otherwise. If FALSE is returned you can get the error detail
calling the functions xml_getErrorID, xml_getErrorMsg and xml_getErrorPos.

Remarks
When calling xml_processDocument keep in mind the following things:

- Every time you call xml_processDocument all references to previously parsed
documents and all structures instantiated in previous calls are deleted. The
parser never releases the document passed as argument. You must free the
memory in use by the document by your own.

- If xml_processDocument returns FALSE only the pointer XMLDoc is stored
internally. No additional structures are kept so you can release the document.

- Otherwise if TRUE is returned all DOM tree information keeps references to the
document so you MUST NOT release the memory allocated by it. If you do that
xml_nodeValue and xml_nodeName will get undefined.

DOM XML Library for Palm OS Page 7

Navigation Routines
XMLNode xml_getRoot(HXML h)
Returns the Root node of the document. If there isn’t a root element it returns NULL.

XMLNode xml_parentNode(XMLNode node)
Returns the parent node. If node is the ROOT node, it returns NULL.

XMLNode xml_firstChild(XMLNode node)
Returns the first child node. If there are no such children, returns NULL.

XMLNode xml_lastChild(XMLNode node)
Returns the last child node. If there are no such children, returns NULL.

XMLNode xml_firstAttribute(XMLNode node)
Returns the first attribute of the node. If there is no such attribute, returns NULL.

XMLNode xml_lastAttribute(XMLNode node)
Returns the last attribute of the node. If there is no such attribute, returns NULL.

XMLNode xml_nextSibling(XMLNode node)
Returns the next sibling of the node in the parent's (children/attributes) list. If there
is no such sibling, returns NULL.

XMLNode xml_previousSibling(XMLNode node)
Returns the previous sibling of the node in the parent's (children/attributes) list. If
there is no such sibling, returns NULL.

XMLNode xml_getElementsByTagName_first (XMLNode node, const
char*name)
Returns the first child in the node children list for which the result of
xml_nodeName is exactly equal to name. If no such children exits, NULL is
returned.

XMLNode xml_getElementsByTagName_next (XMLNode node, const
char*name)
Returns the next sibling of the node in the parent's children list for which the result
of xml_nodeName is exactly equal to name. If no such sibling exits NULL is
returned.

XMLNode xml_getAttributeNode(XMLNode node, const char*name)
Returns the attribute node from the node attributes list for which the result of
xml_nodeName is exactly equal to name. If no such attribute exits NULL is
returned.

XMLNode xml_getAttribute(XMLNode node, const char* name, char
*buffer, ushort size)

DOM XML Library for Palm OS Page 8

Returns the attribute node from the node attributes list for which the result of
xml_nodeName is exactly equal to name. If no such attribute exits NULL is
returned. In case of the existence of the node, buffer is filled with the result of
xml_nodeValue otherwise is filled with an empty string.

uint xml_attributeCount(XMLNode node)
Returns the number of items in the attributes list of the node

uint xml_childCount(XMLNode node)
Returns the number of items in the children list of the node. If the node doesn’t have
children it returns 0.

BOOL xml_hasChildNodes(XMLNode node)
Return TRUE if the node has child items.

XMLNode xml_getAttributeNode(XMLNode node, const char*name)
Returns the attribute node from the node attributes list for which the result of
xml_nodeName is exactly equal to name. If no such attribute exits NULL is
returned.

XMLNode xml_getAttribute(XMLNode node, const char* name, char
*buffer, ushort size)
Returns the attribute node from the node attributes list for which the result of
xml_nodeName is exactly equal to name. If no such attribute exits NULL is
returned. In case of the existence of the node, buffer is filled with the result of
xml_nodeValue otherwise is filled with an empty string.

DOM XML Library for Palm OS Page 9

Error routines
ushort xml_getErrorID(HXML h)
Returns the code of the last Error occurred:
 ERR_NONE (0) No error occurred.

ERR_CLOSE_TAG (1) End tag does not match the start tag.
ERR_INV_CHAR (2) Expecting a char while another char or ‘end of

file’ found.
ERR_INV_SINTAX (3) Incorrect syntax.
ERR_ELEM_NCLOSED (4) Element not closed.
ERR_ELEM_NREC (5) Element not recognized. E.g. <!NOTATION>

char *xml_getErrorMsg(HXML h)
Returns a string containing a detailed message of the error. NULL is returned if no
error occurred.

char *xml_getErrorPos(HXML h)
Returns the offset where the parser stopped processing the document. 0 is returned
if no error occurred.

DOM XML Library for Palm OS Page 10

Node Information Routines
uint xml_nodeType(XMLNode node)
Specifies the XML Document Object Model (DOM) node type, which determines valid
values and whether the node can have child nodes.
NODE_ELEMENT (1) The node represents an element. An element node

can have the following child node types: Element,
Text, Comment, ProcessingInstruction,
CDATASection. An element node can be the child of
the Document and Element nodes.

NODE_ATTRIBUTE (2) The node represents an attribute of an element.
NODE_TEXT (3) The node represents the text content of a tag. A

text node cannot have any child nodes. A text node
can appear as the child node of the Attribute,
DocumentFragment, Element, and EntityReference
nodes.

NODE_CDATA_SECTION (4) The node represents a CDATA section in the XML
source. CDATA sections are used to escape blocks
of text that would otherwise be recognized as
markup. A CDATA section node cannot have any
child nodes. A CDATA section node can appear as
the child of the DocumentFragment,
EntityReference, and Element nodes.

NODE_PROCESSING_INSTRUCTION
(7)

The node represents a processing instruction from
the XML document. A processing instruction node
cannot have any child nodes. A processing
instruction node can appear as the child of the
Document, DocumentFragment, and Element
nodes.

NODE_COMMENT (8) The node represents a comment in the XML
document. A comment node cannot have any child
nodes. A comment node can appear as the child of
Document, DocumentFragment, and Element
nodes.

NODE_DOCUMENT (9) The node represents a document object, which, as
the root of the document tree, provides access to
the entire XML document. A document node can
have the following child node types: Element,
ProcessingInstruction, Comment, and
DocumentType. A document node cannot appear as
the child of any node types.

NODE_DOCUMENT_TYPE (10) The node represents the document type declaration,
indicated by the <!DOCTYPE > tag. A document
type node can have the following child node types:
Notation and Entity. A document type node can
appear as the child of the Document node.

DOM XML Library for Palm OS Page 11

char* xml_nodeName(XMLNode node, char *buffer, uint size)
Returns the qualified name of the element, attribute or a fixed string for other node
types.
Remarks
Always returns a non-empty string. The xml_nodeName returns the qualified name
for the element, or attribute. For example, it returns xxx:yyy for the element
<xxx:yyy>.

The node name value varies, depending on the xml_nodeType result.
NODE_ATTRIBUTE Contains the name of the attribute.
NODE_CDATA_SECTION Contains the literal string "#cdata-section".
NODE_COMMENT Contains the literal string "#comment".
NODE_DOCUMENT Contains the literal string "#document".
NODE_DOCUMENT_TYPE Contains the name of the document type; for

example, xxx in <!DOCTYPE xxx ...>.
NODE_ELEMENT Contains the name of the XML tag, with any

namespace prefix included if present.
NODE_PROCESSING_INSTRUCTION Contains the target; the first token following the <?

characters.
NODE_TEXT Contains the literal string "#text".

char* xml_nodeValue(XMLNode node, char *buffer, uint size)
Contains the text associated with the node.

This value depends of the xml_nodeType result.
NODE_ATTRIBUTE Contains a string representing the value of the

attribute.
NODE_CDATA_SECTION Contains a string representing the text stored in

the CDATA section.
NODE_COMMENT Contains the content of the comment, exclusive of

the comment's start and end sequence.
NODE_DOCUMENT, NODE_ELEMENT Contains Null. Note that attempting to set the

value of nodes of these types generates an error.
NODE_DOCUMENT_TYPE Contains all extra data in <!DOCTYPE name ….>

tag.
NODE_PROCESSING_INSTRUCTION Contains the content of the processing instruction,

excluding the target
NODE_TEXT Contains a string representing the text stored in

the text node.

char* xml_text(XMLNode node, char *buffer, uint size)
Contains the text content of the node and its subtrees.

DOM XML Library for Palm OS Page 12

Edition Routines
XMLNode xml_createRoot(HXML h)
Creates a document tree and returns a reference to its root node. If there was
already a document tree in h it is released.
Returns NULL if the root of the new document can’t be created.

XMLNode xml_createAttribute(HXML h, const char *name, const
char *value = "")
Creates a attribute node and returns a reference to it. Set its name and value to the
supplied data.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

XMLNode xml_createCDATASection(HXML h, const char* data = "")
Creates a CDATA section node that contains the supplied data, and returns a
reference to it.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

XMLNode xml_createTextNode(HXML h, const char *text = "")
Creates a text node that contains the supplied data and returns a reference to it.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

XMLNode xml_createComment(HXML h, const char *comment = "")
Creates a comment node that contains the supplied data and returns a reference to
it.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

XMLNode xml_createDocumentFragment(HXML h)
Creates a new document fragment node and returns a reference to it.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

XMLNode xml_createElement(HXML h, const char *tagName)
Creates an element node using the specified name and returns a reference to it.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

XMLNode xml_createProcessingInstruction(HXML h, const char
*target = "xml", const char *data="version=\1.0")

DOM XML Library for Palm OS Page 13

Creates a processing instruction node that contains the supplied target and data and
returns a reference to it.
Although this method creates the new object in the context of this document, it does
not automatically add the new object to the document tree. It is a free node.
Returns NULL if the node can’t be created.

BOOL xml_appendChild(XMLNode parent, XMLNode node)
Appends node as the last child of the parent. Node must be a free node. Node must
be of a child type valid of parent.
Returns FALSE if the operation can’t be carried out.

BOOL xml_appendAttribute (XMLNode parent, XMLNode attr)
Appends the attribute node as the last node in parent attribute list. No validation is
made. Attr must be a free node and parent must accept attributes. Attr must be of
type attribute.
Returns FALSE if the operation can’t be carried out.

XMLNode xml_cloneNode(XMLNode node, BOOL deep)
Clones a node and returns a reference to the new node, attributes are copied if it had
them. If the deep flag is set all children nodes are cloned too.
Returns FALSE if the operation can’t be carried out.

BOOL xml_insertBefore(XMLNode newNode, XMLNode before)
Inserts newNode as the previous sibling of the before node.
Returns FALSE if the operation can’t be carried out.

BOOL xml_remove(XMLNode node);
Removes the node from the document tree. The node is not destroyed, it can be put
back on the tree using xml_insertBefore, xml_appendChild or xml_Replace. Node
cannot be the root of the document or a free node.
Returns FALSE if the operation can’t be carried out.

BOOL xml_replace(XMLNode newNode, XMLNode oldNode)
Replaces the oldNode with the newNode. The newNode must be a free node and
oldNode cannot be a free node. After this function completes the oldNode is free
node and the newNode is set.
Returns FALSE if the operation can’t be carried out.

BOOL xml_delete(XMLNode node)
Deletes the node releasing all resources in use by it, all its children and attributes. If
it isn’t a free node it is first removed from the tree and then deleted.
Returns FALSE if the operation can’t be carried out.

BOOL xml_deleteFreeNodes(HXML h);
Releases all free nodes. All references to then get invalid.
Returns FALSE if the operation can’t be carried out.

uint xml_toXML(HXML h, char *buffer, uint size)
Fill the buffer with the XML representation of document tree. The representation is
cut-off to feet in the size specified.
Returns the count of characters written.

DOM XML Library for Palm OS Page 14

Purchasing the source code

If you are interested in purchasing the library source code, please contact
sales@pdadevelopers.com for more information.

Revision History

Version 1.0
Initial Version.

Version 1.1
New Targets: Expanded Mode (A4/A5-relative data) and Expanded with A5-based
Jumptable.

Version 1.1.5
New Targets: All modes with 4 bytes ‘int’.

DOM XML Library for Palm OS Page 15

This documentation is part of the DOM XML Library for Palm OS, Version 1.1.5,
which is a copyrighted product. All rights are reserved.

Copyright © 2003-2006 pdadevelopers.com

Check our website http://www.pdadevelopers.com for more information on our
products.

