
FastBasic Guide – Table of Contents

Table of Contents
Quick Start 3
Variables, Constants and operators 15

Integer , Float point , String , Arrays , Named Constants , Numeric
Constants , String Constants , Operations , Derived Math Functions

List of Commands: Normal Commands 20
Commands that assign a value to a variable 20

CONST , INPUT , LET , LSET , MID$, REDIM , RSET , SORT , SWAP
Control Commands 22

CALL , CASE , DO , ELSE , END , ENDIF, END SELECT, ERROR, EXIT DO, EXIT
FOR, EXIT SUB, FOR, GOSUB, GOTO, IF…GOTO, IF…THEN, NEXT, ON ERROR,
RESUME, RETURN, RUN, SELECT CASE, STOP, WEND, WHILE

Commands that draw on the screen 30
ARC, CIRCLE, CLS, LINE, LINE TO, POINT, PRINT, PRINT AT, RECTANGLE

File Commands 32
CHDIR, CHDRIVE, CLOSE, FILE COPY, GET #, GET RSRC #, INPUT #, KILL,
LINE INPUT #, MKDIR, NAME, OPEN, PRINT #, PUT #, PUT RSRC #, RMDIR,
SEEK #, WRITE #

Other Commands 37
BEEP, PAUSE, RANDOMIZE, REM, SEND KEYS, SEND CHAR, SOUND

List of Commands: GUI Commands 39
Commands that Create Objects 39

NEW BITMAP, NEW BUTTON, NEW CHECKBOX, NEW FORM, NEW LABEL, NEW LIST,
NEW NUMFIELD, NEW POPUPLIST, NEW POPUPTRIGGER, NEW PUSHBUTTON, NEW
RPTBUTTON, NEW SELECTTRIGGER, NEW SLIDER, NEW STRFIELD

Commands that Modify Objects 42
DISABLE OBJECT, ENABLE OBJECT, FOCUS OBJECT, FRM TITLE, HIDE OBJECT,
LIMITS OBJECT, MOVE OBJECT, OPTIONS LIST, OPTIONS TRIGGER, REMOVE
OBJECT, RESIZE FORM, RESIZE OBJECT, SELECT FIELD, SELECT GROUP, SELECT
LIST, SHOW OBJECT, TEXT OBJECT, TOPITEM, VALUE OBJECT

Commands that affect the screen 46
CLOSE FORM, COORDINATES, FONT, FONT USER, FRM REDRAW, HIRES SCALING,
INK, INVERT, OPEN FORM, PAPER, RESOLUTION

Other GUI-Commands 49
ALERT, DRAW BITMAP, MSGBOX, WAIT

List of Commands: Extended Commands 51
MODE, PLAY MIDI, PLAY WAVE, SCREEN LOCK

List Of Functions: Numeric Functions 53
ABS, ASC, ATN, CALCDATETIME, COS, CVD, CVI, CVL, CVS, DAY, DEG, DRIVE,
EOF, ERR, EXP, FILEATTR, FIX, FRE, HOUR, IIF, INSTR, INT, LBOUND, LEN,

-1-

FastBasic Guide – Table of Contents

LOC, LOF, LOG, MINUTE, MONTH, NOW, NUMFILES, PI, POS, RAD, RND, ROUND,
RSRCID, SECOND, SGN, SIN, SQR, STRCOMP, SYSVAR, TAN, TICS, TIMER,
UBOUND, VAL, WEEKDAY, YEAR

List of Functions: String Functions 63
CHR$, CURDIR$, DATE$, DELOCALIZE$, DIR$, ERROR$, FILECREATOR$,
FILETYPE$, FORMAT$, HEX$, IIF$, INKEY$, INPUT$, LCASE$, LEFT$,
LOCALIZE$, LTRIM$, MID$, MKD$, MKI$, MKL$, MKS$, NEXTFILE$, OCT$,
RIGHT$, RSRCTYPE$, RTRIM$, SPC$, STR$, STRING$, SYSVAR$, TIME$, TRIM$,
UCASE$

List of GUI-Functions: Numeric Functions 70
ALERT, CURFOCUS, CORFONT, CURFORM, CURINK, CURPAPER, CURRESOLUTION,
FONTHEIGHT, FONTWIDTH, GROUPSELECTION, LASTEVENT, LISTSELECTION,
MSGBOX, NUMFORMS, NUMOBJECTS, OBJDYNAMIC, OBJID, OBJNDX, OBJPOS,
OBJSTYLE, OBJTYPE, OBJVALUE, POPUPLIST, RGB, WAIT BTN

List of GUI-Functions: String Functions 76
INPUTBOX$, OBJTEXT$

List of Errors 77

-2-

FastBasic Guide – FastBasic Quick Start

FastBasic Quick Start
When you start FastBasic the first time, you have a screen similar
to the one you can see here:

We will create a new program that will show all
available characters:

FOR n = 0 TO 255
PRINT CHR$(n)
NEXT n

To create a new program, tap the button New.

This will open a new window asking for the name
of the new program.
Enter the name you prefer, for instance Test01.
Don't include the extension .BAS because it is
automatically added.
Tap the button OK.

Now, it appears another window with the settings
for the program.
Tap the button OK to set the default options.
You can tap the “i” button to show the related
help page.

Ok, we have now an empty program:
The only line we can see simply says “End of
File”.
Tap this line to add the first line of our first
program.

-3-

FastBasic Guide – FastBasic Quick Start

It has appeared now a new window for editing the
whole line. The number of the line is shown in
the title of this window: in this case Line 1.
Here you can tap also the “i” button to get some
help.
Tap the button Select a command.

The first line will contain the sentence
FOR n = 0 TO 255
so tap the button F to go to first command which
start with the letter F, select the command FOR
and then tap the button OK. Another faster way
to select a command is to double click the word
(FOR in this case) of the list.

Once the command has been selected, the required
parameters are automatically added.
This is useful to check the syntax for each
command.
Let's input the rest of the line.
Tap the button <num. var>.

Now we have to create the integer variable n.
Tap <new variable&> in the list and then the
button with a green tick .
An alternative is to double click
<new variable&>.

Enter the name of the variable.
In this case we will use n.
Because it's an integer variable, it will have
the suffix & but this mustn't be included in the
name (it's automatically added).

Tap the button OK.

-4-

FastBasic Guide – FastBasic Quick Start

As you can see, the variable has been included
in the line.

Now, we will input the <start> value.
Tap the word <start>.

The value 1 is a constant, so tap the push
button CONST.

Input the value 1.
You can use the keypad which has appeared
automatically.
Tap the green tick .

Now, press the word <end> and input 255 in similar way than
before.

The first line is finished.
Now we can tap the green tick .

We will see for a short time a message saying
AutoParenth: creating new line.
This is because the command FOR must be
programmed together with the command NEXT.

-5-

FastBasic Guide – FastBasic Quick Start

And we can see that the corresponding line has
been automatically created.

Now we want to insert a line between the FOR-
line and the NEXT-line.

To do so, tap the triangle (pointing down) at
the left of the NEXT-line and then tap Insert
line before.

Now we can fill a line which will be inserted
between both lines.
Note that the tile shows Line 2.

This line must contain the sentence
PRINT CHR$(n&)

Select the command PRINT and then tap the button
OK.

Tap the word <value>.

-6-

FastBasic Guide – FastBasic Quick Start

To input a string function, tap the push button
FUNCT and then the check box String.

Then select the function CHR$(and press the
button .

Alternatively, you can double click on CHR$(.

Now, tap the word <num. value>.

Now, tap the button VAR and
select the variable n&.

Now, the line number 2 is finished.
Tap the green to enter the line.

Our first program is finished.

Let's execute it.

-7-

FastBasic Guide – FastBasic Quick Start

Tap the Menu button, select the group Run and
then Run.

Once the program has finished, appears the
message Press any key to continue.

But we can't see most of the characters.

Let's modify the program.

We will finish the 2nd line with a semicolon “;”
to print next character just after the previous
one.

Tap the second line and then tap the grey space
after the last parentheses and before the ENTER
symbol .

Select the check box Separator and then select
the semicolon ;
Tap the green to enter the line.

Our program is modified.
Let's execute again the program.

-8-

FastBasic Guide – FastBasic Quick Start

Ok, we can see all characters now.

But we can't know the number of each character.

So, let's modify again the program: we will print now the variable
n& together with the CHR$(n&).

Insert a new line before the line that contains
PRINT CHR$(n&)

Create a line with this words:

PRINT n& ;

Tap the button instead of the green tick.
This will open a new empty line just after this
line.

-9-

FastBasic Guide – FastBasic Quick Start

Input a line containing these words:

PRINT “ “ ;
To input a string constant, tap the button CONST
and then the check box String. If you need a
keyboard on the screen, you can tap the icon
which represents it (marked with a circle).

Tap the green to enter the line.

Now, we will copy the last line we have input.

Tap the Select button, i.e. the one containing
an arrow pointing to top-left.

At the bottom of the screen you can read Select
first line.

Tap the line we want to copy.

Now, we will tap the same line again, because
the first line and the last line to select are
the same.
If you want to cancel the selection mode, tap
again the button with the arrow.

-10-

FastBasic Guide – FastBasic Quick Start

Once all the lines have been selected, the
buttons for Cut, Copy and delete have appeared.

You can find some more options tapping the
triangle at the left of the selected line.

Press the Copy button.

Then, press the Paste button and select where to
paste the copied lines. The lines will be
inserted before the line you select.
In this case, we want to copy it after PRINT
CHR$(n&);

So select the line NEXT n&

Now, we have made all the modifications.

Let's execute the program again.

Well. Let's analyse the result.

The screen has been scrolled and the first 181
characters have disappeared.

We will have to use a command to pause the
execution.

Insert before the line NEXT N& a new line with
the words
PAUSE 1 MAXIMUM
and execute the program again.

-11-

FastBasic Guide – FastBasic Quick Start

Oh! The program is running very slow!
Let's stop it: tap the Applications Launcher
button (the one with a house).

We get an error screen which says Break.
Tap the button OK to go to debugging screen.

In this screen you can modify the lines, too.
But you can't create new lines nor delete them.

You can also check the value of any variable:
tap the button VAR

Select the variable you want to check.
Its current value appears at the bottom of the
screen.

Close this screen.

Stop the execution of the program, tapping the
button End.

It will appear this message.

Tap the button OK to return to main screen.

-12-

FastBasic Guide – FastBasic Quick Start

We will delete all the line of program and start
again.
To do so, open the menu, go to Edit and tap
Select All.

Now, press the button for deleting (it's the
last one) and confirm the deletion.

Open the menu, go to File and tap Open program.
Select the FastB_Example1.BAS, which is provided
with the examples.

We will copy all the program.
To do so, open the menu again, go to Edit and
tap Select All.
Now tap the button for Copy (or open the menu >
Edit > Copy).

Open the program Test01.BAS again and press the
paste button.

Select the line ---End of File--- (there is only
this line to select.)

-13-

FastBasic Guide – FastBasic Quick Start

Now we get a message that says: The variable
page doesn't exist.

We will create it automatically.
Select Create a new public variable and tap OK.

We will keep the name of the variable “page”, so
tap the button OK.

Do the same with the rest of variables.

All the program has been pasted.

We will execute it to see the results

Well, this look better.

This is the end of Quick Start. You can check by yourself the rest
of options.

-14-

FastBasic Guide – Variables, Constants and Operators

Variables, Constants and Operators
The name of any variable must start by a letter, and can contain
digits and underscore symbol (_).
The maximum length of the name is 15 characters.

Public variables can be used anywhere in the program, while
private variable can be used only in the current sub.

Integer variable
The limits of this kind of variable are:
+2,147,483,647 for positive values.
-2,147,483,648 for negative values.

Each integer variable occupies 4 bytes of memory.

Floating point variable
The limits of this kind of variable are:
±1.79769E+308 for big values.
±2.22507E-308 for small values.

Each floating point variable occupies 8 bytes of memory.

String variable
One string can contain up to 63.5Kb (about 65000 characters), if
there is enough free memory.

Each string variable occupies as many bytes of memory as the
string length plus 4 bytes.

Arrays
The arrays can have up to 4 dimensions, and the maximum size for
any array is 63.5Kb (65024 bytes).

The first element of each dimension can be 0 or 1, depending on
value of 'Array base 1' in 'Program settings'.

The size of an array is calculated multiplying the number of
elements by the size of the element (integer=4, float=8).
The size of STRING elements is 4 bytes. Then, each element is
considered like a string variable and the limits are the same than
the variables.
You must add then 16 bytes to total size, used for array data.

-15-

FastBasic Guide – Variables, Constants and Operators

Arrays can be only Public, they can't be Private.

Named constants
You can create new named-constants and set their value in a
program-line with command CONST.

The value of constants can't be modified during program execution,
preventing possible errors.

A constant must be defined at the beginning of the program (before
any executable command) and can be declared only in the Main
Procedure.

Constants are Public, i.e. they can be used anywhere in the
program.
The rules for the name are the same than for variables, and also
the maximum and minimum values.

Numeric constants
When editing a line, if you want to input an integer constant, the
limits are:
+2,147,483,647 for positive values.
-2,147,483,648 for negative values.

If you want to input a floating point constant, the limits are:
±1.79769E+308 for big values.
±2.22507E-308 for small values.

String constant
When editing a line, if you want to input a string constant, you
can input up to 80 characters.

Operations
Addition
Syntax: expr1 + expr2

Add two expressions.
If both expressions are strings, they are concatenated.

Subtraction
Syntax: expr1 - expr2

Returns the result of subtracting expr2 from expr1.
Both expressions must be numeric.

-16-

FastBasic Guide – Variables, Constants and Operators

Multiplication
Syntax: expr1 * expr2

Returns the result of multiplying two expressions.
Both expressions must be numeric.

Float division
Syntax: expr1 / expr2

Returns the result of dividing expr1 by expr2.
Both expressions must be numeric.
Result is always in float mode. To execute a fast division
between two integers, use integer division '\'.

Integer division
Syntax: expr1 \ expr2

Returns the result of dividing expr1 by expr2.
Both expressions must be numeric.
Result is always in integer mode. If any of the expressions is
not integer, it is converted to integer before making the
division.

Power
Syntax: expr1 ^ expr2

Returns the result of raising expr1 to the power of expr2.
Both expressions must be numeric.
If any of both operands is a float number, then MathLib
library is required.

Modulus
Syntax: expr1 MOD expr2

Returns the remainder of the division between expr1 and expr2.
Both expressions must be numeric.
If any of both operands is a float number, then MathLib
library is required.

Comparing
• Syntax: expr1 < expr2

Returns -1 (true) if expr1 is less than expr2. Otherwise
returns 0 (false).
Expressions can be numeric or strings, but both must be of
the same type. Float and integers can be mixed.

• Syntax: expr1 <= expr2
Returns -1 (true) if expr1 is less or equal to expr2.
Otherwise returns 0 (false).
Expressions can be numeric or strings, but both must be of
the same type. Float and integers can be mixed.

• Syntax: expr1 = expr2
Returns -1 (true) if expr1 is equal to expr2. Otherwise
returns 0 (false).
Expressions can be numeric or strings, but both must be of

-17-

FastBasic Guide – Variables, Constants and Operators

the same type. Float and integers can be mixed.
• Syntax: expr1 > expr2

Returns -1 (true) if expr1 is greater than expr2. Otherwise
returns 0 (false).
Expressions can be numeric or strings, but both must be of
the same type. Float and integers can be mixed.

• Syntax: expr1 >= expr2
Returns -1 (true) if expr1 is greater or equal to expr2.
Otherwise returns 0 (false).
Expressions can be numeric or strings, but both must be of
the same type. Float and integers can be mixed.

• Syntax: expr1 <> expr2
Returns -1 (true) if expr1 is different from expr2.
Otherwise returns 0 (false).
Expressions can be numeric or strings, but both must be of
the same type. Float and integers can be mixed.

• Syntax: expr1 AND expr2
Perform a boolean bitwise AND between both expressions.
 0 AND 0 = 0
 0 AND 1 = 0
 1 AND 0 = 0
 1 AND 1 = 1
For example:
10 AND 6 gives a result of 2
(BIN: 1010 AND 0110 = 0010)

• Syntax: expr1 OR expr2
Perform a boolean bitwise OR between both expressions.
 0 OR 0 = 0
 0 OR 1 = 1
 1 OR 0 = 1
 1 OR 1 = 1
For example:
10 OR 6 gives a result of 14
(BIN: 1010 OR 0110 = 1110)

• Syntax: expr1 XOR expr2
Perform a boolean bitwise exclusive-OR between both
expressions.
 0 XOR 0 = 0
 0 XOR 1 = 1
 1 XOR 0 = 1
 1 XOR 1 = 0
For example:
10 XOR 6 gives a result of 12
(BIN: 1010 XOR 0110 = 1100)

• Syntax: - numeric expression
Changes the sign of expression.

• Syntax: NOT numeric expression
Returns the 2-complement of the number.

-18-

FastBasic Guide – Variables, Constants and Operators

If the number is not an integer, it is converted to it.
This operator changes the bits that are 0 to 1, and vice
versa.
For example:
 NOT 4 (=BIN 0000 0100)
 gives a result of
 -5 (=BIN 1111 1011)

Derived Math functions
This is a list of math functions which can be derived from the
available functions:

• arc-sine ASIN(x)
 = ATN(x / SQR(-x * x + 1))

• arc-cosine ACOS(x)
 = ATN(-x / SQR(-x * x + 1))
 + 2 * ATN(1)

• hyperbolic sine SINH(x)
 = (EXP(x) - EXP(-x)) / 2

• hyperbolic cosine COSH(x)
 = (EXP(x) + EXP(-x)) / 2

• hyperbolic tangent TANH(x)
 = (EXP(x) - EXP(-x))
 / (EXP(x) + EXP(-x))

• hyperbolic arc-sineASINH(x)
 = LOG(x + SQR(x * x + 1))

• hyperbolic arc-cosine ACOSH(x)
 = LOG(x + SQR(x * x - 1))

• hyperbolic arc-tang. ATANH(x)
 = LOG((1 + x) / (1 - x)) / 2

• base-n logarithm LOGn(x)
 = LOG(x) / LOG(n)

-19-

FastBasic Guide – List of Commands: Normal Commands

List of Commands: Normal Commands

Commands that assign a value to a variable

CONST
Syntax: CONST name = expression

Create a new named-constant.
Constants can't be defined more than once, and they must be
declared at the beginning of the program (before any executable
command) and only in the main procedure.

INPUT
Syntax: INPUT variable

Used to put a value into variable.

The system starts a line editor that finishes when user writes the
ENTER key.
This line editor shows a blinking cursor on the screen, at the
position determined by last PRINT command. You can modify this
position programming
PRINT AT x, y, “”;
before programming INPUT.

To stop the line editor, the user can press also on the 'Home'-
silk button (used for opening the Applications Launcher). This
action will generate a 'Break' error and stop the execution.

LET
Syntax: LET variable = expression

Stores the value of the expression into a variable.
If a float value is tried to be stored into an integer variable,
it is first rounded to the nearest integer. For example: 1.3 is
rounded to 1, and 1.7 is rounded to 2

Besides '=', some C-like separators can be used:
• += adds expression to variable (available also for strings).
• -= substracts expression from variable.
• *= multiplies variable by expression.
• /= divides variable into expression.
• ^= raises variable to the power of expression.

-20-

FastBasic Guide – List of Commands: Normal Commands

When using LET with arrays, the expression after the sign '=' is
always evaluated before variable.

For example:
LET array(UserFn1) = array(UserFn2) + UserFn3(x)

The function UserFn2 will be performed before UserFn1. To be
exacts, the order will be: UserFn2, UserFn3, UserFn1.

LSET
Syntax: LSET variable$ = expression$

Stores the value of expression$ into a string variable. The data
will be aligned to left.
LSET replaces the spare characters with spaces.
If the length of expression$ if larger than the current length of
variable$ then LSET only copies the characters which are at the
most left side.
To set the initial length of variable, you can use function SPC$,
together with command LET:
 LET a$ = SPC$(Length%)

MID$
Syntax: MID$(var$, start, length) = value$

Replaces a specified number of characters in a string variable
with characters from another string.

REDIM
Syntax: REDIM array (dimensions)

Erase the array and allocate new space for it.
The new array will be filled with zeroes.

The number of dimensions can't be changed. For example, if the
array a$ has been dimensioned as a$(10,3)
then REDIM a$(20, 5) is ok,
but REDIM a$(20) is not valid, because it should be programmed
with 2 dimensions.

RSET
Syntax: RSET variable$ = expression$

Stores the value of expression$ into a string variable. The data
will be aligned to right.

-21-

FastBasic Guide – List of Commands: Normal Commands

RSET replaces the spare characters with spaces.
If the length of expression$ if larger than the current length of
variable$ then RSET only copies the characters which are at the
most right side.
To set the initial length of variable, you can use function SPC$,
together with command LET:
 LET a$ = SPC$(Length%)

SORT
Syntax: SORT array

Sorts an array from lower to higher. The number of dimensions must
be 1.

SWAP
Syntax: SWAP variable1, variable2

Swaps the values of two variables.
Variables must be of the same type, i.e. float and integer
variables can't be mixed.

Control Commands

CALL
Syntax: CALL UserSub

Transfers the control to a user Sub or Function.
It can be used also for calling a Function (which returns a value)
when you want to discard the returned value.

CASE
The command CASE can have several forms:
Syntax 1: CASE expression

Used with SELECT CASE to evaluate a single expression.

Syntax 2: CASE IS-operator expression
Used with SELECT CASE to evaluate a expression with a
relational operator.
Available operators are:

• CASE IS <= expression
• CASE IS < expression
• CASE IS = expression

-22-

FastBasic Guide – List of Commands: Normal Commands

• CASE IS > expression
• CASE IS >= expression
• CASE IS <> expression

Syntax 3: CASE start TO end
Used with SELECT CASE to evaluate if a expression is within
some specified limits.
The smaller value must appear first. For example, the
statements associated with the line CASE -1 TO -5 are not
executed if the testexpresssion is -4. The line should be
written as CASE -5 TO -1.

Syntax 4: CASE ELSE
Used at the end of SELECT CASE group.
The lines following CASE ELSE are executed only if the rest of
CASE clauses have been false.

See command SELECT CASE for details.

DO
Syntax1:
DO WHILE | UNTIL condition
 statementblock
LOOP

Syntax2:
DO
 statementblock
LOOP WHILE | UNTIL condition

Repeat a group of instructions WHILE a condition is true, or UNTIL
a condition becomes true.
With 'Syntax2', the loop is executed at least once, since the
condition is not evaluated until the end.

DO…LOOP loops can be nested how many times you want.

You can use command EXIT DO to jump to the line after LOOP.

ELSE
Syntax: ELSE

See command IF … THEN for details.

-23-

FastBasic Guide – List of Commands: Normal Commands

END
Syntax: END

Stops program immediately.
Open files will be closed and variables will be erased.

In a compiled program, control returns to system.
In a non compiled one, a message is displayed and control returns
to listing view after pressing any key.
If button 'break' is pressed instead of a key, variables are not
erased and then you can check their value.

END IF
Syntax: END IF

See command IF … THEN for details.

END SELECT
Syntax: END SELECT

See command SELECT CASE for details.

ERROR
Syntax: ERROR num

Simulates the generation of an error.

EXIT DO
Syntax: EXIT DO

Used for exit a DO…LOOP loop. It transfers the control to the line
following LOOP.

See command DO for details.

EXIT FOR
Syntax: EXIT FOR

Used for exit a FOR…NEXT loop. It transfers the control to the
line following NEXT.

See command FOR for details.

-24-

FastBasic Guide – List of Commands: Normal Commands

EXIT SUB / FUNCTION
Syntax1: EXIT SUB
Syntax2: EXIT FUNCTION

Jumps to the end of a Sub or Function.

FOR
Syntax:

FOR counter = start TO end [STEP step]
…
statements
…

NEXT counter

Repeat a group of statements for a specified number of times.

counter is a numeric variable (integer or float), used as a
looping counter.
start is the initial value for the counter.
end is the final value for the counter.
The optional value step is added to the counter each time the loop
is done. If it is omitted, the default value is 1.

If step is positive, the loop is executed if counter <= end. If
step is negative, the loop is executed if counter >= end.
Once the loop is started and all statments in loop have been
executed, the value step is added to counter. Then, the value of
counter is checked again to see if loop must be repeated, or
continue in the line following NEXT.

Modifying the value of counter while in the loop makes more
difficult to read and debug the program.
The recommended way to exit from the loop before getting the end
value is using EXIT FOR. It is used often in the checking of some
condition (for example IF … THEN), and it transfers the control to
the line following NEXT.

FOR … NEXT loops can be nested an unlimited number of times, but
always using different counters.

GOSUB
Syntax: GOSUB label

Jumps to a subroutine (in the same procedure).

-25-

FastBasic Guide – List of Commands: Normal Commands

When the program finds a RETURN the control goes back to the line
following GOSUB.

GOTO
Syntax: GOTO label

Jumps to the specified line-label.

IF … GOTO
Syntax: IF condition GOTO label

If condition is true, jumps to the specified line-label.
If not, continues to next line.

IF …THEN
Syntax:

IF condition THEN
statementblockTrue

[ELSE
 statementblockFalse]
END IF

If condition is true, executes the statmentblockTrue.
If condition is false, jumps to statementblockFalse, if this is
programmed.
If not programmed, jumps to the line following END IF.

NEXT
Syntax: NEXT counter

Used at the end of FOR … NEXT loops.

See command FOR for details.

ON ERROR
Syntax1: ON ERROR GOTO label
Syntax2: ON ERROR GOTO 0

Enables an error-handling routine and specifies the location of
the routine within a procedure.

If a line-label is specified, the error-handling routine that
starts at the line specified is enabled. If a run-time error

-26-

FastBasic Guide – List of Commands: Normal Commands

occurs, control branches to the specified line, making the error
handler active. The specified line must be in the same procedure
as the ON ERROR statement.

If you set the label to 0, the error-handling is disabled, so any
run-time error that occurs is fatal: an error message is
displayed, and execution stops.

If an error occurs while an error handler is active (before the
RESUME command), the current error handler cannot handle the error
and an error message is displayed, and execution stops.

RESUME
Syntax1: RESUME label
Syntax2: RESUME NEXT

Resumes execution after an error-handling routine is finished.

If a line-label is specified, execution resumes with that line.
If you specify NEXT, execution resumes with the statement
immediately following the statement that generated the error.

RETURN
Syntax: RETURN

Returns from a subroutine called with GOSUB.

RUN
Syntax: RUN fileName

Open a program and execute it. The file must be in RAM memory. If
the file is in any external card, an error will occur.
In non-compiled mode, the expected type of file is a Basic file.
Termination “.BAS” must not be added. It will be automatically
added.
In compiled mode, it will open any application.

SELECT CASE
Syntax:

SELECT CASE testexpression
CASE expression1

[statementblock-1]
CASE expression2

[statementblock-2]

-27-

FastBasic Guide – List of Commands: Normal Commands

…
[CASE ELSE]

[statementblock-n]
END SELECT

testexpression is any numeric or string expression

statementblock… consist of any number of statements of one or more
lines.

expression1 and expression2: These elements can have any of the
three following forms:

• CASE expression
• CASE expr1 TO expr2
• CASE IS expression

expression is any numeric or string expression. The type of the
expression must match the type of the testexpression. Integer and
float expressions can be mixed. They are automatically converted.

If the testexpression matches the expression associated with a
CASE clause, then the statement block following that CASE clause
is executed up to the next CASE clause or, for the last one, up to
END SELECT. Control then passes to the statement following END
SELECT.

If you use the TO keyword to indicate a range of values, the
smaller value must appear first. For example, the statements
associated with the line CASE -1 TO -5 are not executed if the
testexpresssion is -4. The line should be written as CASE -5 TO
-1.

You may use a relational operator only with CASE_is command and
the IS keyword.

If CASE ELSE is used, its associated statements are executed only
if the testexpression does not match any of the other CASE
selections. It is a good idea to have a CASE ELSE statement in
your SELECT CASE block to handle unforeseen testexpression values.

When there is no CASE ELSE statement, and no expression listed in
the CASE clauses matches testexpression, program execution
continues normally. No error occurs.

You may use multiple expressions or ranges in each CASE clause,
but you must input each CASE command in several lines. For
example, the following lines are valid:

CASE 1 TO 4
(…CASE) 7 TO 9

-28-

FastBasic Guide – List of Commands: Normal Commands

(…CASE) 11
(…CASE) 13
(…CASE) IS > MaxNumber%

If an expression appears in more than one CASE clause, only the
statements associated with the first appearance of the expression
are executed.

SELECT CASE statements may be nested. Each SELECT CASE statement
must have a matching END SELECT statement.

STOP
Syntax: STOP

Stops program and goes to debugging view.

In a compiled program, a 'Break' error is generated and control
returns to system.

WEND
Syntax: WEND

Ending part of a WHILE … WEND loop.

See command WHILE for details.

WHILE
Syntax:

WHILE condition
…
statementblock
…

WEND

Executes statementblock while condition is true.
If condition is false at the first time, statementblock is not
executed.

Command DO … LOOP offers a better functionality than WHILE … WEND.
See command DO for details.

-29-

FastBasic Guide – List of Commands: Normal Commands

Commands that draw on the screen

ARC
Syntax: ARC x1, y1 TO x2, y2 RADIUS r

Draws an arc in screen, from one point to the other.
The centre is automatically calculated.

If you want to draw in different colours, command INK must be
programmed before.
You can also draw in inverted mode programming command INVERT
before.

CIRCLE
Syntax: CIRCLE x, y RADIUS r [FILLED]

Draws a circle in screen, with centre at (x,y).
If the optional word FILLED is used, then the interior of the
circle is painted with foreground colour.

If you want to draw in different colours, command INK must be
programmed before.
You can also draw in inverted mode programming command INVERT
before.

CLS
Syntax: CLS

Clears the screen and set the current position for printing and
drawing to the top-left corner.

LINE
Syntax: LINE x1, y1 TO x2, y2

Draw a line from (x1,y1) to (x2,y2).

If you want to draw in different colours, command INK must be
programmed before.
You can also draw in inverted mode programming command INVERT
before.

LINE TO
Syntax: LINE TO x2, y2

-30-

FastBasic Guide – List of Commands: Normal Commands

Draw a line from last drawn point to (x2,y2).

See command LINE for details.

POINT
Syntax: POINT x, y

Draw a pixel using the current foreground colour.

See command LINE for details.

PRINT
Syntax: PRINT expression

Shows expression on the screen. If expression does not fit within
the screen, it is truncated in several lines.

You can use at the end of the line some separators to define
behavior after expression is shown.
With no separator, next PRINT will write on next line.
With semicolon (;) separator, next PRINT will write immediately
after last shown character.
With comma (,) separator, next PRINT will write at a distance of
one tabulator space.

If you want to PRINT in different colours, or with different
fonts, commands INK or FONT must be programmed before.
You can also draw in inverted mode programming command INVERT
before.

PRINT AT
Syntax: PRINT AT x, y, expression

Shows expression on the screen, starting at the position (x, y).

This command only shows the characters that fit within the screen,
contrary to command PRINT, which truncates the expression in
several lines.

See command PRINT for details about end-separator.

You can use this command for positioning printing cursor, for
example:
PRINT AT x, y, “”;

-31-

FastBasic Guide – List of Commands: Normal Commands

RECTANGLE
Syntax: RECTANGLE x1, y1 TO x2, y2 [FILLED]

Draw a box with the points (x1,y1) and (x2,y2) specifying
diagonally opposite corners.
If the optional word FILLED is used, then the interior of the box
is painted with foreground colour.

If you want to draw in different colours, command INK must be
programmed before.
You can also draw in inverted mode programming command INVERT
before.

File Commands

CHDIR
Syntax: CHDIR DirName

Changes the current directory in an external card.
This command is not valid for RAM storage.

CHDRIVE
Syntax: CHDRIVE DriveName

Changes the current drive.

CLOSE
Syntax: CLOSE #FileNum

Close an open file.

FILE COPY
Syntax: FILE COPY source TO destination

Copies a file.
The file names can include the directory and the drive.

When copying from Ram to an external card, the termination .pdb or
.prc is added automatically.

-32-

FastBasic Guide – List of Commands: Normal Commands

GET #
Syntax: GET #FileNum, variable$

Read data from an open file, and set these data to a string
variable. The file must have been opened in RANDOM, BINARY or
INPUT mode.
In RANDOM mode, the working unit is a record, while in BINARY mode
it is a byte.
Data read with GET # are usually written with PUT #.

These are the rules for files open in RANDOM mode:
The record number must be selected before with command SEEK #. If
SEEK is not used, the reading record is the one following last GET
or PUT #.
The full content of the record is passed to string. PalmOS Devices
are based in C language. This means that strings written with
other Palm applications (for example MemoPad) can have a CHR$(0)
at the end.

These are the rules for files open in INPUT or BINARY mode:
The position where to read must be selected before with command
SEEK #. If SEEK is not used, the reading position is the one
following last GET # or PUT #.
The length of string must be the same as the number of bytes that
must be read. For example, to read 10 bytes from current position:

LET a$ = STRING(10, “ “)
GET #1, a$

GET RSRC #
Syntax: GET RSRC #FileNum, RsrcType, RsrcID, variable$

Read a resource record from an open file, and set the data to a
string variable. The file must have been opened in RANDOM RESOURCE
mode.
If the specified resource doesn't exists, the variable is set to
empty string “”.

INPUT #
Syntax: INPUT #FileNum, variable

Read data from a sequential open file, and set these data to a
variable. The file must have been opened in INPUT or BINARY mode.
When reading a number, it must be written using the dot '.' as
decimal separator.
Data read with INPUT # are usually written with WRITE #.

-33-

FastBasic Guide – List of Commands: Normal Commands

KILL
Syntax: KILL FileName

Erases permanently a file.
The file name can include the directory and the drive.

LINE INPUT #
Syntax: LINE INPUT #FileNum, string variable

Read a full line from a sequential open file, and set this line to
a string variable. The file must have been opened in INPUT or
BINARY mode.
Data read with LINE INPUT # are usually written with PRINT #.

MKDIR
Syntax: MKDIR DirName

Creates a new directory in an external card.
This command is not valid for RAM storage.

NAME
Syntax: NAME OldName AS NewName

Renames a file.
old name can include the directory and the drive, but new name
can't.

OPEN
Syntax: OPEN name FOR mode AS FileNum [CREATOR creator TYPE type]

Open a file to enable input/output operations.

• name is a string which contains a valid file name. Directory
and card unit can be included, like in a PC. See commands
CHDRIVE and CHDIR for details.

• mode specifies how to open the file. Valid modes are INPUT,
OUTPUT, APPEND, BINARY to work with sequential files, or
RANDOM or RANDOM_RESOURCE to work with databases.
• INPUT for sequential reading (with INPUT# or> LINE INPUT#If

file doesn't exist, an error occurs.
• OUTPUT for sequential writing (with PRINT# or WRITE#). If

file already exists, it is deleted first. If file doesn't
exist, it is created.

-34-

FastBasic Guide – List of Commands: Normal Commands

• APPEND for sequential writing. If file already exists, new
data are added after existing data. If file doesn't exist,
it is created.

• BINARY for sequential reading or writing with GET# or PUT#.
Written or read data are a set of bytes, whose length
depends on a string-variable length. If file doesn't exist,
it is created.

• RANDOM for database reading or writing with GET# or PUT#.
Valid only for databases in RAM. To open a database in an
external card, use BINARY mode. If file doesn't exist, it
is created.

• RANDOM_RESOURCE for PRC-database reading or writing with
GET RSRC# or PUT RSRC#. If file doesn't exist, it is
created.

• FileNum is an integer value between 1 and 255.
• Files which are stored in RAM have a creator and type

attributes. These are a 4-chars strings (see Palm
Documentation for details). The following ones are the
default values if they are not specified (recommended):
• For sequential files, creator ''REAd'' and type ''TEXt''

(PalmDoc files).
• For random files, creator will be the same than current

application (see menu Options > This program settings) and
type will be ''DATA''.

To open a sequential file that is not a Palm Doc file, the Palm OS
version must be 3.0 or greater. You should use SYSVAR (OSVERSION)
and check that the result is >= &H0300

PRINT #
Syntax: PRINT #FileNum, expression

Write expression to a sequential file. The file must have been
opened in OUTPUT, APPEND or BINARY mode.
The same separators used with PRINT can be used here too.
The data written with PRINT # are usually read with LINE INPUT #

PUT #
Syntax: PUT #FileNum, string [NEW]

Write the data contained in string to an open file. The file must
have been opened in RANDOM, BINARY, OUTPUT or APPEND mode.
In RANDOM mode, the working unit is a record, while in BINARY mode
it is a byte.
The data written with PUT # are usually read with GET #.

-35-

FastBasic Guide – List of Commands: Normal Commands

These are the rules for files open in RANDOM mode:
The record number must be selected before with command SEEK #. If
SEEK is not used, the reading record is the one following last GET
or PUT #.
The optional word NEW will create a new record (only available in
RANDOM mode). If word NEW is omitted, then the existing record is
replaced with the passed string.
To erase a record, pass an empty string “” (only RANDOM mode).
PalmOS Devices are based in C language. This means that strings
which can be used for other Palm applications (for example
MemoPad) must have a CHR$(0) at the end.

These are the rules for files open in BINARY, OUTPUT or APPEND
modes:
The position where to write must be selected before with command
SEEK #. If SEEK is not used, the writing position is the one
following last GET # or PUT #.
The optional word NEW is not allowed. Data are written in a
sequential way. If file is not large enough, it is enlarged.

PUT RSRC #
Syntax: PUT RSRC #FileNum, RsrcType, RsrcID, string

Write the data contained in string to a open file. The file must
have been opened in RANDOM RESOURCE mode.
If the specified resource already exists, then the existing record
is replaced with the passed string.
To erase a record, pass an empty string “”.

RMDIR
Syntax: RMDIR DirName

Removes a directory in an external card.
The directory must be empty before removing it. You can check if
there is any file in the dir using the function NUMFILES().
This command is not valid for RAM storage.

SEEK #
Syntax: SEEK #FileNum, position

Set the position for the next reading or writing operation of an
open file.
This instruction is not valid for files open in APPEND or RANDOM
RESOURCE modes.

-36-

FastBasic Guide – List of Commands: Normal Commands

WRITE #
Syntax: WRITE #FileNum, expression

Write expression to a sequential file. The file must have been
opened in OUTPUT, APPEND or BINARY mode.
For float numbers, it uses always the dot '.' as decimal
separator, regardless of local format, contrary to PRINT #, which
uses local format.
When writing a string, quotation marks are also written at the
beginning and at the end.
The data written with WRITE # are usually read with INPUT #

Other Commands

BEEP
Syntax: BEEP number

Play a pre-defined (simple) system sound.
The available beep numbers are:

• 1: SNDINFO Heralds non-crucial information.
• 2: SNDWARNING Grabs the user's attention.
• 3: SNDERROR Indicates an illegal operation.
• 4: SNDSTARTUP Played at device start up time.
• 5: SNDALARM Generic alarm sound; note that this is not the

Datebook's alarm sound.
• 6: SNDCONFIRMATION Indicates approval or acceptance.
• 7: SNDCLICK The button click sound.

PAUSE
Syntax: PAUSE seconds [MAXIMUM]

Waits the number of seconds specified or, if MAXIMUM is specified,
until an event occurs (for example, a key is pressed).
This means that if MAXIMUM is specified the pause-time can be
shorter than the specified time. If MAXIMUM is not written, the
elapsed time is exactly the programmed time.

If seconds is zero, then waits forever, until a key is pressed or
a button is tapped. The word MAXIMUM is ignored.

RANDOMIZE
Syntax: RANDOMIZE seed

-37-

FastBasic Guide – List of Commands: Normal Commands

Initialize the ramdom-numbers generator of RND function and set
seed as the seed number for it.

If RANDOMIZE is never used, the function RND uses as seed number
always the same. It means that the values returned by RND are the
same every time you start a program.

If seed is zero, it isn't modified.

Usually this command is programmed in this way:
RANDOMIZE TIMER

REM
Syntax: REM remark

This command is used only to include explanatory remarks in a
program.

SEND KEYS
Syntax: SEND KEYS string

Send one or more keystrokes like if they were pressed on the
keyboard.

SEND CHAR
Syntax: SEND CHAR value

Send one character as if a key was pressed on the keyboard.

SOUND
Syntax: SOUND frequency, milliseconds, volume

Perform a simple sound synthesis operation.

-38-

FastBasic Guide – List of Commands: GUI Commands

List of Commands: GUI Commands

Commands that create objects

NEW BITMAP
Syntax: NEW BITMAP #objectID, bitmapID AT x, y

Create a new bitmap in the current form.
Palm OS 3.0 or greater is needed to use this command.

The bitmapID is a numeric value identifying the resource that
provides the bitmap. This value must be unique within the
application scope.
Usually the objectID and the bitmapID are the same, but this is
not mandatory.

NEW BUTTON
Syntax:
NEW BUTTON #objectID, title$ AT x, y WIDTH width HEIGHT height

Create a new control object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

The style of the control will be defined as a button.
Font to be used must be specified before with command FONT.

NEW CHECKBOX
Syntax:

NEW CHECKBOX #objectID GROUP group, title$ AT x, y WIDTH width
HEIGHT height

Create a new control object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

The style of the control will be defined as a check box.
Font to be used must be specified before with command FONT.

NEW FORM
Syntax:
NEW FORM #formID, title$ AT x, y WIDTH width HEIGHT height [CLEAN]

-39-

FastBasic Guide – List of Commands: GUI Commands

Create a new form dynamically.
Palm OS 3.0 or greater is needed to use this command.

If CLEAN is used, screen is cleaned before drawing the new form,
and form will be not modal.
If not used, form will be modal.

To remove the created form, use the command CLOSE FORM

NEW LABEL
Syntax: NEW LABEL #objectID, title$ AT x, y

Create a new label object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

Font to be used must be specified before with command FONT.

NEW LIST
Syntax:

NEW LIST #objectID AT x, y WIDTH width HEIGHT height OPTIONS
array$

Create a new list object dynamically and install it in the current
form.
Palm OS 3.2 or greater is needed to use this command.

Font to be used must be specified before with command FONT.

NEW NUMFIELD
Syntax:

NEW NUMFIELD #objectID MAXLEN MaxChars AT x, y WIDTH width
HEIGHT height

Create a new field object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

The style of the field will be defined as numeric.
Font to be used must be specified before with command FONT.

NEW POPUPLIST
Syntax:

NEW POPUPLIST #objectID AT x, y WIDTH width HEIGHT height

-40-

FastBasic Guide – List of Commands: GUI Commands

OPTIONS array$

Create a new list object dynamically and install it in the current
form.
Palm OS 3.2 or greater is needed to use this command.

The style of the list will be defined as a popup-list, so it will
not be displayed on the screen until function POPUPLIST is called.
Font to be used must be specified before with command FONT.

NEW POPUPTRIGGER
Syntax:

NEW POPUPTRIGGER #objectID title$ AT x, y WIDTH width HEIGHT
height OPTIONS array$ LISTROWS list rows

Create a new control object dynamically and install it in the
current form.
Palm OS 3.2 or greater is needed to use this command.

The style of the control will be defined as a popup trigger.
Font to be used must be specified before with command FONT.

NEW PUSHBUTTON
Syntax:

NEW PUSHBUTTON #objectID GROUP group, title$ AT x, y WIDTH
width HEIGHT height

Create a new control object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

The style of the control will be defined as a push button.
Font to be used must be specified before with command FONT.

NEW RPTBUTTON
Syntax:
NEW RPTBUTTON #objectID, title$ AT x, y WIDTH width HEIGHT height

Create a new control object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

The style of the control will be defined as a repeating button.
Font to be used must be specified before with command FONT.

-41-

FastBasic Guide – List of Commands: GUI Commands

NEW SELECTTRIGGER
Syntax:

NEW SELECTTRIGGER #objectID title$ AT x, y WIDTH width HEIGHT
height OPTIONS array$ LISTROWS list rows

Create a new control object dynamically and install it in the
current form.
Palm OS 3.2 or greater is needed to use this command.

The style of the control will be defined as a selector trigger.
Font to be used must be specified before with command FONT.

NEW SLIDER
Syntax:

NEW SLIDER #objectID AT x, y WIDTH width HEIGHT height FROM
MinValue TO MaxValue STEP PageSize

Create a new slider object dynamically and install it in the
current form.
Palm OS 3.5 or greater is needed to use this command.

The initial value will be set to zero. To set other values, use
the commands VALUE OBJECT and LIMITS OBJECT.

NEW STRFIELD
Syntax:

NEW STRFIELD #objectID MAXLEN MaxChars AT x, y WIDTH width
HEIGHT height

Create a new field object dynamically and install it in the
current form.
Palm OS 3.0 or greater is needed to use this command.

The style of the field will be defined as alphanumeric.
Font to be used must be specified before with command FONT.

Commands that modify objects

DISABLE OBJECT
Syntax: DISABLE OBJECT #objectID

Set a control as disabled. Disabled controls do not respond to the
pen.
The control is not hidden, it is still shown.

-42-

FastBasic Guide – List of Commands: GUI Commands

ENABLE OBJECT
Syntax: ENABLE OBJECT #objectID

Set a control as enabled. Disabled controls do not respond to the
pen.
The control is not redrawn.

FOCUS OBJECT
Syntax: FOCUS OBJECT #objectID

Set the focus of a form to the specified object. The object must
be a field.

FRM TITLE
Syntax: FRM TITLE title$

Change the title of current form.

HIDE OBJECT
Syntax: HIDE OBJECT #objectID

Hide the specified object and set its attribute data (usable bit)
so that it does not redraw or respond to the pen.

LIMITS OBJECT
Syntax: LIMITS OBJECT #objectID FROM MinValue TO MaxValue

Change the limits of the specified object. The object must be a
scroll bar or a slider.

MOVE OBJECT
Syntax: MOVE OBJECT #objectID TO x, y

Move an object to the specified position.

OPTIONS LIST
Syntax: OPTIONS LIST #objectID = array [REDRAW]

Change the options for a list.

-43-

FastBasic Guide – List of Commands: GUI Commands

If REDRAW is not specified, then the display is not updated.

OPTIONS TRIGGER
Syntax:
OPTIONS TRIGGER #objectID = array

Change the options for a trigger.
The display is not updated.

REMOVE OBJECT
Syntax: REMOVE OBJECT #objectID

Remove an object created dynamically.

RESIZE FORM
Syntax: RESIZE FORM x, y WIDTH width HEIGHT height

Resize and move the current form.

RESIZE OBJECT
Syntax: RESIZE OBJECT #objectID TO width, height

Resize an object.

SELECT FIELD
Syntax: SELECT FIELD #objectID FROM start TO end

Set the current selection in a field and highlight the selection.
To cancel a selection, set both startPosition and endPosition to
the same value.

SELECT GROUP
Syntax: SELECT GROUP #group = objectID

Set the selected control in a group of controls.
This command unsets all the other controls in the group. The
display is updated.

SELECT LIST
Syntax: SELECT LIST #objectID = position

-44-

FastBasic Guide – List of Commands: GUI Commands

Set the selection for a list.
The old selection, if any, is unselected. If the list is visible,
the selected item is visually updated. The list is scrolled to the
selection, if necessary, as long as the list object is both
visible and usable.

The first item can be 1 or 0, depending on value of the field
Array base 1 in the menu option This program settings, it is, the
value returned by LBOUND().

SHOW OBJECT
Syntax:
SHOW OBJECT #objectID

Set an object as usable and draw it.

TEXT OBJECT
Syntax: TEXT OBJECT #objectID = title

Change the text of the specified object. The object must be a
field or a control.
If the object is a numeric field, the string must contain also a
numeric value.

TOPITEM
Syntax: TOPITEM LIST #objectID = position [REDRAW]

Set the item visible. The item cannot become the top item if it's
on the last page.
The value you specify for itemNum must be in the range 0 to max-
number-of-items. If REDRAW is not specified, then the display is
not updated.

The first item can be 1 or 0, depending on value of the field
Array base 1 in the menu option This program settings, it is, the
value returned by LBOUND().

VALUE OBJECT
Syntax: VALUE OBJECT #objectID = value

Change the value of the specified object. The object must be a
scroll bar, a slider, a check box or a push button.
If the object is a check box or a push button, the value means 0

-45-

FastBasic Guide – List of Commands: GUI Commands

for unselected or 1 for selected.

Commands that affect the screen

CLOSE FORM
Syntax: CLOSE FORM

Close the current form.

COORDINATES
Syntax: COORDINATES XYzero

Modify the XY-zero of the screen, for subsequent commands like
PRINT AT, LINE, CIRCLE…

Available values for XYzero are:
• TOP LEFT: Sets the origin of X and Y at the top left corner.

The Y-axis increases downwards. This is the default mode.
• MIDDLE CENTER: Sets the origin of X and Y in the middle of

the screen. The Y-axis increases upwards.
• BOTTOM LEFT: Sets the origin of X and Y at the bottom left

corner. The Y-axis increases upwards.

FONT
Syntax: FONT number

Change the font for subsequent instructions (PRINT, NEW BUTTON …)

The available font numbers are:
• 0: Standard plain text font. A small standard font used to

display user input. This font is small to display as much
text as possible.

• 1: Bold font. Same size as STANDARD font but bold for easier
reading. Used for text labels in the user interface.

• 2: Large font. A larger font provided as an alternative to
STANDARD font for users who find the standard font too small
to read.

• 3: Symbol font. Contains many special characters such as
arrows, shift indicators, and so on.

• 4: Symbol11 font. Contains the check boxes, the large left
arrow, and the large right arrow.

• 5: Symbol7 font. Contains the up and down arrows used for the
repeating button scroll arrows and the dimmed version of the
same arrows.

-46-

FastBasic Guide – List of Commands: GUI Commands

• 6: Led font. Contains the numbers 0 through 9, –, ., and the
comma (,). Used by the Calculator application for its numeric
display.

• 7: Large bold font (OS version 3.0 or later).
To set the default system font, set a value of -1.
If a number different to these is tried to be set, an error is
generated.

FONT USER
Syntax: FONT USER rsrcID

Change the font to a custom font for subsequent instructions
(PRINT, NEW BUTTON …)

Palm OS 3.5 or greater is needed to use this command.

The font must be defined in the 'Included Rsrc file' with a Rsrc-
type of 'nfnt' or 'NFNT'.

FRM REDRAW
Syntax: FRM REDRAW

Clears the screen and then redraw all form objects (buttons, …).
The current position for printing and drawing is set to the top-
left corner.

HIRES SCALING
Syntax: HIRES SCALING ON | OFF

Specifies whether bitmaps and fonts should be scaled.
If you need to display a large, low-density bitmap (for instance,
a map or a photograph) you can use this command to draw your
bitmap unscaled, allowing the user to see more of the bitmap at
one time.
If you want to draw more, but smaller, text on a handheld that has
a high-density display (including 1.5 and double-density), you can
use this command to draw text unscaled.
On a handheld with a high-density display, if the bitmap being
drawn, or the font being used, is part of a family that contains
both low- and high-density members, this command controls which
member is used. If Scaling is set to OFF, for instance, the low-
density font is used, unscaled, when drawing subsequent text.

-47-

FastBasic Guide – List of Commands: GUI Commands

INK
Syntax: INK foreground

Change the foreground colour for subsequent drawing instructions
(PRINT, LINE…)

To calculate the value to pass, use the function RGB()
To set the default system colour, set a value of -1.

Palm OS 3.5 or greater is needed to use this command.
In lower OS, this command does nothing.

To see the available colours (in a device with colour screen),
select 'Available colours' in 'See also' list.

INVERT
Syntax: INVERT ON | OFF

When ON, swap foreground and background colours for subsequent
drawing instructions (PRINT, LINE…)

OPEN FORM
Syntax: OPEN FORM #formID [CLEAN]

Open the specified form. You must have included a resources file.

If CLEAN is used, screen is cleaned before drawing the new form,
and form will be not modal.
If not used, form will be modal.

PAPER
Syntax: PAPER background

Change the background colour for subsequent drawing instructions
(PRINT, LINE…)

To calculate the value to pass, use the function RGB()
To set the default system colour, set a value of -1.

Palm OS 3.5 or greater is needed to use this command.
In lower OS, this command does nothing.

To see the available colours (in a device with colour screen),
select 'Available colours' in 'See also' list.

-48-

FastBasic Guide – List of Commands: GUI Commands

RESOLUTION
Syntax: RESOLUTION density

Changes the resolution of the screen.

Available values for density are:
• STANDARD DENSITY: This is the default mode. This mode is

available in all devices. The usual size of the screen in
this mode is 160x160 pixels.

• ONE AND A HALF: Not all devices support this mode. If this
density is not supported, the system will set the STANDARD
density.

• DOUBLE: This is the Hi-Res mode. Not all devices support this
mode. The usual size of the screen in this mode is 320x320
pixels. If this density is not supported, the system will set
the STANDARD density.

• TRIPLE: Not all devices support this mode. If this density is
not supported, the system will try to set the DOUBLE density.
If this is not supported too, then will set the STANDARD
density.

• QUADRUPLE: Not all devices support this mode. If this density
is not supported, the system will try to set the DOUBLE
density. If this is not supported too, then will set the
STANDARD density.

If the programmed density is not available, the system will set
the maximum supported density, lower than the programmed one.

Other GUI-Commands

ALERT
Syntax: ALERT #alertID, text1$, text2$, text3$

Create a modal dialogue from an alert resource and display the
dialogue until the user taps a button in the alert dialogue.

Up to three strings can be passed to this routine. They are used
to replace the variables ^1, ^2 and ^3 that are contained in the
message string of the alert resource.

DRAW BITMAP
Syntax: DRAW BITMAP #bitmapID AT x, y

Draws the specified bitmap in the current form.

-49-

FastBasic Guide – List of Commands: GUI Commands

The bitmapID is a numeric value identifying the resource that
provides the bitmap. This value must be unique within the
application scope.

MSGBOX
Syntax: MSGBOX prompt, [buttons, title]

Displays a message in a dialog box and waits for the user to click
a button

• prompt is a string expression displayed as the message in the
dialog box.

• buttons is an optional numeric expression specifying the
number and type of buttons to display.

• OK ONLY: Displays only the OK button.
• OK CANCEL: Displays OK and Cancel buttons.
• ABORT RETRY IGNORE: Displays Abort, Retry and Ignore

buttons.
• YES NO CANCEL: Displays Yes, No and Cancel buttons.
• YES NO: Displays Yes and No buttons.
• RETRY CANCEL: Displays Retry and Cancel buttons.

If omitted, the default value is OK ONLY.
• title is an optional string displayed in the title bar of the

dialog box.

WAIT
Syntax: WAIT ticks [LOWLEVEL]

Wait for an event.

ticks is the maximum number of ticks to wait before an event is
returned (-1 means wait indefinitely).
If the separator LOWLEVEL is NOT specified, only the high-level
events (keydown, button pressed…) are taken into account.
If specified, when any kind of event occurs, the control returns
to next line.
If LOWLEVEL is used, you should also use MODE VERY FAST to get a
correct behaviour.
To get the event that occurred, use function LASTEVENT.

-50-

FastBasic Guide – List of Commands: Extended Commands

List of Commands: Extended Commands

MODE
Syntax1: MODE NORMAL
Syntax2: MODE FAST
Syntax3: MODE VERY FAST

Set the running mode.
In compiled programs this instuction is ignored, because it's
always running in very fast mode.

In FAST mode, the execution becomes faster. The system checks the
pressed keys only in lines that have a jump backwards (NEXT,
WEND…)
If the program comes into a endless loop, the only way to stop the
program is tapping the 'Home'-silk button.
In VERY FAST mode, there is no way to stop the program, so be very
careful when using it. It should be used only together with WAIT
LOWLEVEL

PLAY MIDI
Syntax: PLAY MIDI string$, volume

Plays a midi string.
Palm OS 3.0 or greater is needed to use this command.
In Palm OS, the string needs a special header. If it doesn't
exist, you should insert the following string at the beginning:
“PMrc” + CHR$(8) + CHR$(0) + CHR$(0) + CHR$(0)

PLAY WAVE
Syntax: PLAY WAVE WaveData$, volume

Play formatted sound data read from a string.

The supported WAVE parameters are:
• Uncompressed (PCM) or IMA 4-bit adaptive differential (IMA

ADPCM). The ADPCM type is also known as DVI ADPCM; in a WAVE
file, it's known as format 0x11.

• One or two-channels.
• All normal sampling rates (8k, 11k, 22.05k, 44.1k, 48, 96k).

You can't interrupt or abort a resource playback once it's been
initiated. The resource always plays to the end of the data.

-51-

FastBasic Guide – List of Commands: Extended Commands

SCREEN LOCK
Syntax: SCREEN LOCK ON | OFF

Lock or unlock the current screen.

Palm OS 3.5 or greater is needed to use this command.

This command can be used to 'freeze' the display while doing
lengthy drawing operations to avoid a flickering effect.
Call SCREEN LOCK OFF to unlock the display and cause it to be
updated with any changes.
Because this command copies the screen, using it is a relatively
expensive operation.

The screen will be temporally unlocked when calling commands like
INPUT, OPEN FORM, INPUTBOX, etc. or when an error occurs.

-52-

FastBasic Guide – List of Functions: Numeric Functions

List of Functions: Numeric Functions

ABS
Syntax: ABS(number)

Returns the absolute value of number, i.e. if number is negative,
it's converted to positive.

ASC
Syntax: ASC(string)

Returns the ASCII code of the first character of string.
If string is empty, returns 0.

ATN
Syntax: ATN(number)

Returns arc-tangent of number.
Returned value is in radians. You can use DEG() to convert it to
degrees.

MathLib library is required.

CALCDATETIME
Syntax: CALCDATETIME(year, month, day, hour, minute, second)

Return the number of seconds elapsed from 12:00 A.M. on January 1,
1904 to the specified date and time.

COS
Syntax: COS(angle)

Returns cosine of angle, which must be in radians.
You can use RAD() to convert degrees to radians.

MathLib library is required.

CVD
Syntax: CVD(string)

Convert a 8-bytes string into a floating point number of double

-53-

FastBasic Guide – List of Functions: Numeric Functions

precision. This function is the opposite of MKD$

CVI
Syntax: CVI(string)

Convert a 2-bytes string into an integer number. This function is
the opposite of MKI$

CVL
Syntax: CVL(string)

Convert a 4-bytes string into an integer number. This function is
the opposite of MKL$

CVS
Syntax: CVS(string)

Convert a 4-bytes string into a floating point number of single
precision. This function is the opposite of MKS$

DAY
Syntax: DAY(seconds)

Returns the day (1 to 31) of a date specified as the number of
seconds since January 1, 1904

DEG
Syntax: DEG(radians)

Convert radians to degrees.

DRIVE
Syntax: DRIVE(DriveName)

Returns -1 if a drive is available. Otherwise returns 0.
Use this function to check if a external SD card is inserted.

EOF
Syntax: EOF(file number)

-54-

FastBasic Guide – List of Functions: Numeric Functions

Returns -1 (true) if the end of file has been reached.
If not, returns 0 (false).

ERR
Syntax: ERR

Return the number of error if the program is in an error-handling
routine.

EXP
Syntax: EXP(number)

Returns number e raised to the power of number.
MathLib library is required.

FILEATTR
Syntax: FILEATTR(FileName$)

Returns the attributes of the specified file. If file doesn't
exist, an error occurs. Use function DIR$ the check if the file
exists.

The value returned by FILEATTR is the addition of the following
attribute values:

• 0: Normal
• 1: Read only
• 2: Hidden
• 4: System file
• 16: Directory
• 32: Archive
• 256: Resources file (.PRC)

To know which attributes are set, use the relational operator AND
to make a bit-to-bit comparison. For example:
 LET result = FILEATTR(FileName$) AND 16
will return a value different to zero if FileName$ is a directory.

FIX
Syntax: FIX(number)

Returns the truncate part of number.
For example:

-55-

FastBasic Guide – List of Functions: Numeric Functions

FIX(3.4) = 3
FIX(3.9) = 3
FIX(-3.4) = -3
FIX(-3.9) = -3

FRE
Syntax: FRE (number)

Return the amount of free memory.

The meaning of returned value depends on value of number:
• -1: free dynamic memory.
• 1: total dynamic memory.
• -2: free space in stack.
• -3: free storage memory (RAM).
• 3: total storage memory (RAM).

HOUR
Syntax: HOUR(seconds)

Returns the hour (0 to 24) of a date specified as the number of
seconds since January 1, 1904

IIF
Syntax: IIF(condition, TrueExpression, FalseExpression)

If condition is not zero, returns the true expression.
If it is zero, returns the false expression.

INSTR
Syntax: INSTR(start, string$, token$)

Looks for token$ inside string$, starting at position number
start.

If found, returns the position of token$ (1st character is 1).
If not found, returns zero.

INT
Syntax: INT(number)

Returns integer value of number, it is, the largest integer value

-56-

FastBasic Guide – List of Functions: Numeric Functions

not greater than number.
For example:
INT(3.4) = 3
INT(3.9) = 3
INT(-3.4) = -4
INT(-3.9) = -4

LBOUND
Syntax: LBOUND(array, dimension)

Return the lower limit of an array.
If dimension is omitted, default dimension number is 1.

Returned value can be 1 or 0, depending on value of the field
Array base 1 in the menu option This program settings.

LEN
Syntax: LEN(string)

Returns the length (number of characters) of the string.

LOC
Syntax: LOC(file number)

Returns the current position for next reading or writing operation
of an open file.

LOF
Syntax: LOF(file number)

Returns the size of an open file.
If the file has been opened in RANDOM mode, or in RANDOM RESOURCE
mode, returns the number of records. Otherwise, returns the number
of bytes.

LOG
Syntax: LOG(number)

Returns natural logarithm (base-e) of number.

MathLib library is required.

-57-

FastBasic Guide – List of Functions: Numeric Functions

MINUTE
Syntax: MINUTE(seconds)

Returns the minute (0 to 59) of a date specified as the number of
seconds since January 1, 1904

MONTH
Syntax: MONTH(seconds)

Returns the month (1 to 12) of a date specified as the number of
seconds since January 1, 1904

NOW
Syntax: NOW

Returns the number of seconds elapsed from 12:00 A.M. on January
1, 1904 to the current date and time on the device.

NUMFILES
Syntax: NUMFILES(FileTemplate$ [CREATOR creator$ TYPE type$])

Returns the number of files or directories that match the
specified pattern.

See function DIR$ for more details.

PI
Syntax: PI

Returns the value of pi: 3.1415…

POS
Syntax: POS(ScreenPos)

Return a screen value.

The meaning of returned value depends on value of ScreenPos:
• DRAWING X: current x-value for drawing operations (LINE TO…).
• DRAWING Y: current y-value for drawing operations.
• PRINT X: current x-value for PRINT operations.
• PRINT Y: current y-value for PRINT operations.

-58-

FastBasic Guide – List of Functions: Numeric Functions

• FORM WIDTH: width of current form.
• FORM HEIGHT: height of current form.
• MAX WIDTH: max. width of screen.
• MAX HEIGHT: max. height of screen.

RAD
Syntax: RAD(degrees)

Convert degrees to radians.

RND
Syntax: RND

Returns a random float number between 0 and 1.
To change the seed, use command RANDOMIZE.

ROUND
Syntax: ROUND(number, decimals)

Returns a float number, rounded to the specified number of
decimals.
If decimals is negative, the number is rounded to the left of
decimal point.
For example:
ROUND(3.1415927, 3) = 3.142
ROUND(12345.678, -2) = 12300

RSRCID
Syntax: RSRCID(FileNumber, position)

Returns the resource ID of the record number position.
The file must be open as RANDOM_RESOURCE.

SECOND
Syntax: SECOND(seconds)

Returns the second (0 to 59) of a date specified as the number of
seconds since January 1, 1904

SGN
Syntax: SGN(number)

-59-

FastBasic Guide – List of Functions: Numeric Functions

Returns the sign of number.

Returned values are:
• 1 for positive values.
• 0 for zero values.
• -1 for negative values.

SIN
Syntax: SIN(angle)

Returns sine of angle, which must be in radians.
You can use RAD() to convert degrees to radians.

MathLib library is required.

SQR
Syntax: SQR(number)

Returns the square root of
number.

MathLib library is required.

STRCOMP
Syntax: STRCOMP(string1$, string2$, compare)

Returns -1, 0, or 1, based on the result of a string comparison.

The argument compare must be 0 for binary comparison, or 1 for
text comparison.

Returned values are:
• -1 if string1$ < string2$.
• 0 if string1$ = string2$.
• 1 if string1$ > string2$.

SYSVAR
Syntax: SYSVAR (code)

Return the system numeric variable specified by code.

The available codes are:

-60-

FastBasic Guide – List of Functions: Numeric Functions

• OSVERSION Returns a number which represents the OS version in
hexadecimal format. For example, for OS version 3.10 the
returned value is 784 (hexadecimal &H0310).

• TICKS PER SECOND Returns the number of ticks per second.
• BATTERY Returns the percentage of power remaining in the

battery.
• COLOR SCREEN Returns -1 if the device has a colour screen, 0

otherwise.

TAN
Syntax: TAN(angle)

Returns tangent of angle, which must be in radians.
You can use RAD() to convert degrees to radians.

MathLib library is required.

TICKS
Syntax: TICKS

Returns the tick count since last reset.
The second count does not advance while the device is in sleep
mode.

TIMER
Syntax: TIMER

Returns the elapsed time (in seconds) since last reset.
The second count does not advance while the device is in sleep
mode.

UBOUND
Syntax: UBOUND(array, dimension)

Return the upper limit of an array.
If dimension is omitted, default value is 1.
For example, if the array a$ has been dimensioned as a$(10,3)
 UBOUND(a$, 1) is 10
 UBOUND(a$, 2) is 3
 UBOUND(a$) is 10

-61-

FastBasic Guide – List of Functions: Numeric Functions

VAL
Syntax: VAL(string)

Convert a string to a numeric value.

This function allows only the dot '.' as decimal separator. To
convert strings which are in local format, they must be
delocalized first, with function DELOCALIZE$().

WEEKDAY
Syntax: WEEKDAY(seconds)

Returns the week day of a date specified as the number of seconds
since January 1, 1904

The returned value means:
• 1: Sunday
• 2: Monday
• 3: Tuesday
• 4: Wednesday
• 5: Thursday
• 6: Friday
• 7: Saturday

YEAR
Syntax: YEAR(seconds)

Returns the year of a date specified as the number of seconds
since January 1, 1904

-62-

FastBasic Guide – List of Functions: String Funtions

List of Functions: String Funtions

CHR$
Syntax: CHR$(number)

Returns a one-character string, containing the character indicated
in number.

CURDIR$
Syntax: CURDIR$

Returns the current directory.

DATE$
Syntax: DATE$

Returns a string containing the current date.

The format of that string can be changed selecting menu Options >
This program settings, and changing the field Date format as
local.

DELOCALIZE$
Syntax: DELOCALIZE$(string)

Delocalize a string containing a number.

Decimal separator and thousand separator are specified by system
preferences.

DIR$
Syntax: DIR$(FileTemplate [CREATOR creator TYPE type])

Returns a string representing the name of a file or directory that
matches the specified pattern.
If nothing matches, returns a zero-length string "".

The DIR$ function supports the use of multiple-character (*)
wildcards to specify multiple files. However, single-character (?)
wildcards are not supported.
You must supply a PathName the first time you call the DIR$
function. To retrieve the next item, you can make subsequent calls

-63-

FastBasic Guide – List of Functions: String Funtions

to the NEXTFILE$ function.

ERROR$
Syntax: ERROR$(number)

Returns the error message that corresponds to a given error
number.

FILECREATOR$
Syntax: FILECREATOR$(FileName)

Return a string representing the creator ID of the specified file.

See command OPEN for more details.

FILETYPE$
Syntax: FILETYPE$(FileName)

Return a string representing the type ID of the specified file.

See command OPEN for more details.

FORMAT$
Syntax: FORMAT$(number, format$)

Convert a numeric value to a string, with a specified format.

Available symbols in format$ string are:
• # Show one digit or nothing.
• 0 Show one digit or one zero.
• space Show one digit or one space.
• . Show the decimal point.
• , Show the thousands separator.
• E or e (at the end): Show the number in scientific notation.
• + or - (at the beginning): Show the sign at the beginning of

string.

The order for symbols '#', '0' and space [] should be:
 ##[][]00 .00[][]##
it is, #, 0 and space in the integer part and space, 0 and # in
the fractional part. If the order is wrong, the result string will
be filled with #.

-64-

FastBasic Guide – List of Functions: String Funtions

This function uses only the dot '.' as decimal separator. To
convert strings to local format, you can use function LOCALIZE$()
afterwards.

Examples:
LET x# = 1234.567
FORMAT$(n, "+#,###.##")
 gives "+1,234.57".

FORMAT$(12.3, "[][][]0.00")
 gives "[][]12.30".
Note: [] represents a space.

HEX$
Syntax: HEX$(number)

Convert an integer number to a string representing its hexadecimal
value.

IIF$
Syntax: IIF$(condition, TrueExpression$, FalseExpression$)

If condition is not zero, returns the true expression$.
If it is zero, returns the false expression$.

INKEY$
Syntax: INKEY$

Return a string containing last pressed key.
If there is no key, then return null string, i.e. ""

INPUT$
Syntax: INPUT$(length, FileNum)

Read data from a sequential open file, and returns these data as a
string. The file must have been opened in INPUT or BINARY mode.

LCASE$
Syntax: LCASE$(string)

Converts all characters in a string to lower case.

-65-

FastBasic Guide – List of Functions: String Funtions

LEFT$
Syntax: LEFT$(string, quantity)

Returns a string containing a specified number of characters from
the left side of the string.

LOCALIZE$
Syntax: LOCALIZE$(string)

Localize a string containing a number.

Decimal separator and thousand separator are specified by system
preferences.

LTRIM$
Syntax: LTRIM$(string)

Returns a string containing a copy of a specified string without
blank spaces at its left side.

MID$
Syntax: MID$(string, start, quantity)

Returns a string containing a number of characters specified by
quantity, starting at character start (the first character of a
string starts at 1, not at 0).

If quantity is not specified, then returned chararacters are from
start until the end of the string.

MKD$
Syntax: MKD$(float)

Convert a float number into a 8-bytes string.
The number keeps the double precision.

MKI$
Syntax: MKI$(integer)

Convert an integer number into a 2-bytes string.
The number is first converted into 2-bytes integer.

-66-

FastBasic Guide – List of Functions: String Funtions

MKL$
Syntax: MKL$(integer)

Convert an integer number into a 4-bytes string.

MKS$
Syntax: MKS$(float)

Convert a float number into a 4-bytes string.
The number is first converted into a single precision float.

NEXTFILE$
Syntax: NEXTFILE$

Returns a string representing the name of the next file or
directory that matches the pattern that was previously specified
with DIR$.
If no more files match, returns a zero-length string.

See function DIR$ for more details.

OCT$
Syntax: OCT$(number)

Convert an integer number to a string representing its octal
value.

RIGHT$
Syntax: RIGHT$(string, quantity)

Returns a string containing a specified number of characters from
the right side of the string.

RSRCTYPE$
Syntax: RSRCTYPE$(FileNum, position)

Returns the resource type of the record number position.
The file must be open as RANDOM_RESOURCE.

RTRIM$
Syntax: RTRIM$(string)

-67-

FastBasic Guide – List of Functions: String Funtions

Returns a string containing a copy of a specified string without
blank spaces at its right side.

SPC$
Syntax: SPC$(number)

Returns a string containing a specified number of blank spaces.

STR$
Syntax: STR$(number)

Convert a number to string.

This function uses only the dot '.' as decimal separator. To
convert strings to local format, you can use function LOCALIZE$()
afterwards.

STRING$
Syntax: STRING$(quantity, string)

Return a string with the character string repeated quantity times.

Only the 1st character of string is taken into account.

For example,
STRING$(5, "*") returns "*****"

STRING$(5, "abc") returns "aaaaa"

SYSVAR$
Syntax: SYSVAR$ (code)

Return the system string variable specified by code.

The available codes are:
• USERNAME Returns a string containing the name of the user

which appears in HotSync operations.

TIME$
Syntax: TIME$

-68-

FastBasic Guide – List of Functions: String Funtions

Returns a string containing the current time.

The format of that string is:
hh:mm:ss

TRIM$
Syntax: TRIM$(string)

Returns a string containing a copy of a specified string without
blank spaces at its left and right sides.

UCASE$
Syntax: UCASE$(string)

Converts all characters in a string to capital letters.

-69-

FastBasic Guide – List of GUI-Functions: Numeric Functions

List of GUI-Functions: Numeric Functions

ALERT
Syntax:
ALERT(alertID, text1, text2, text3)

Create a modal dialog from an alert resource and display the
dialog until the user taps a button in the alert dialog.

Up to three strings can be passed to this routine. They are used
to replace the variables ^1, ^2 and ^3 that are contained in the
message string of the alert resource.

CURFOCUS
Syntax: CURFOCUS

Return the ID of the object that has the focus

If no object has the focus, returns 0.

CURFONT
Syntax: CURFONT

Return the number of current font.

See command FONT for details.

CURFORM
Syntax: CURFORM

Returns the ID number of the currently active form

CURINK
Syntax: CURINK

Return the current foreground colour.

See command INK for details.

CURPAPER
Syntax: CURPAPER

-70-

FastBasic Guide – List of GUI-Functions: Numeric Functions

Return the current background colour.

See command PAPER for details.

CURRESOLUTION
Syntax: CURRESOLUTION

Return a value that represents the current resolution of the
screen.

Returned values for density are:
• 72 = STANDARD
• 108 = ONE AND A HALF
• 144 = DOUBLE
• 216 = TRIPLE
• 288 = QUADRUPLE

See command RESOLUTION for details.

FONTHEIGHT
Syntax: FONTHEIGHT

Returns the height in pixels of a line in the current font.

The height of a line is the height of the character cell plus the
space between lines (the external leading)

FONTWIDTH
Syntax: FONTWIDTH(string)

Returns the width of the string, in pixels.

The missing character symbol (an open rectangle) is substituted
for any character that does not exist in the current font.

GROUPSELECTION
Syntax: GROUPSELECTION(group)

Returns the object ID of the selected control.
If no item is selected, returns 0.

-71-

FastBasic Guide – List of GUI-Functions: Numeric Functions

LASTEVENT
Syntax: LASTEVENT(value)

Return the data for the event that occured with some commands like
WAIT, INPUT, WAIT BTN, INKEY…

The available data to return are:
• EVENT TYPE: type of event. The most common types are:

• 0 (nilEvent)
• 4 (keyDownEvent)
• 9 (ctlSelectEvent)
• 10 (ctlRepeatEvent)
• 12 (lstSelectEvent)
• 14 (popSelectEvent)
• 21 (menuEvent)
• 22 (appStopEvent)
• 33 (sclExitEvent)

• LAST KEY: if the event-type is a keyDownEvent, returns the
code of the pressed key

• OBJECT ID: if the event is related to an object, returns the
object ID

• PEN DOWN: returns -1 (true) if the pen was down at the time
of the event, otherwise 0 (false)

• SCREEN X or SCREEN Y: window-relative position of the pen in
pixels (number of pixels from the top-left bound of the
window)

• TAP COUNT: the number of taps received at this location. This
value is used mainly by fields. When the user taps in a text
field, two taps selects a word, and three taps selects the
entire line

• DATUM0 to DATUM7: the specific data for an event, if any. Its
contents depend on the event type

See PalmOS documentation for details.

LISTSELECTION
Syntax: LISTSELECTION(objectID)

Returns the currently selected choice in the list.

The list choices are numbered sequentially.
The first item can be 1 or 0, depending on value of the field
Array base 1 in the menu option This program settings, it is, the
value returned by LBOUND().
If none of the items are selected, returns -1 for ArrayBase 0 or 0

-72-

FastBasic Guide – List of GUI-Functions: Numeric Functions

for ArrayBase 1.

MSGBOX
Syntax: MSGBOX(prompt, [buttons, title])

Displays a message in a dialog box, waits for the user to click a
button, and then returns an integer indicating which button the
user clicked.

• prompt is a string expression displayed as the message in the
dialog box.

• buttons is an optional numeric expression specifying the
number and type of buttons to display.

• OK ONLY: Displays only the OK button.
• OK CANCEL: Displays OK and Cancel buttons.
• ABORT RETRY IGNORE: Displays Abort, Retry and Ignore

buttons.
• YES NO CANCEL: Displays Yes, No and Cancel buttons.
• YES NO: Displays Yes and No buttons.
• RETRY CANCEL: Displays Retry and Cancel buttons.

If omitted, the default value is OK ONLY.
• title is an optional string displayed in the title bar of the

dialogue box.

NUMFORMS
Syntax: NUMFORMS

Return the number of open forms.

NUMOBJECTS
Syntax: NUMOBJECTS

Return the number of objects in the current form.

OBJDYNAMIC
Syntax: OBJDYNAMIC(objectID)

Returns -1 (true) if the object has been created dynamically.
Otherwise, returns 0 (false).

OBJID
Syntax: OBJID(ObjectIndex)

-73-

FastBasic Guide – List of GUI-Functions: Numeric Functions

Returns the object ID, given its index number.

The index of the first object is 1, and the index of last object
is the same than the value returned by the function NUMOBJECTS.
If no object corresponds to given index, returns -1.

OBJNDX
Syntax: OBJNDX(objectID)

Return the index number of the specified object in the in the
current form's objects list.

The index of the first object is 1, and the index of last object
is the same than the value returned by the function NUMOBJECTS.

OBJPOS
Syntax: OBJPOS(objectID, value)

Return a value related to the position of the specified object.

The available choices for value are:
• OBJ X: returns the window-relative X coordinate
• OBJ Y: returns the window-relative Y coordinate
• OBJ WIDTH: returns the width of the object
• OBJ HEIGHT: returns the height of the object

OBJSTYLE
Syntax: OBJSTYLE(objectID)

Return the style of the specified object.
This function only works for objects created dynamically.
Otherwise, returns -1.

See the PalmOS documentation for details.

OBJTYPE
Syntax: OBJTYPE(objectID)

Return the type of the specified object.

The meaning of the returned value is:
• 0 Field

-74-

FastBasic Guide – List of GUI-Functions: Numeric Functions

• 1 Control
• 2 List
• 3 Table
• 4 Bitmap
• 8 Label
• 9 Form title
• 10 Popup list
• 11 Graffiti shift indicator
• 12 Gadget (custom object)
• 13 Scrollbar

See the PalmOS documentation for details.

OBJVALUE
Syntax: OBJVALUE(objectID)

Return the value of the specified object.

For scroll bars and sliders, return its value.
For push buttons and check boxes, return -1 (true) if control is
selected, or zero (false) if unselected.

POPUPLIST
Syntax: POPUPLIST(objectID)

Display a modal window that contains the items in the list and
returns the list item selected, or 0 if no item was selected.

RGB
Syntax: RGB (red, green, blue)

Returns an integer value representing an RGB colour value from a
set of red, green and blue colour components.

WAIT BTN
Syntax: WAIT BTN

Waits until a control is pressed, and return its object ID.

-75-

FastBasic Guide – List of GUI-Functions: String Functions

List of GUI-Functions: String Functions

INPUTBOX$
Syntax:
INPUTBOX$(prompt, buttons, [title, default])

Displays a prompt in a dialog box, waits for the user to input
text or click a button, and then returns a string containing the
contents of the text box.

prompt is a string expression displayed as the message in the
dialog box.
title is an optional string displayed in the title bar of the
dialog box.
default is an optional string displayed in the text box as the
default response if no other input is provided. If you omit
default, the displayed text box is empty.

OBJTEXT$
Syntax: OBJTEXT$(objectID)

Returns the value of of the specified object.

For fields, returns its current value.
For controls, returns its current label.
For a list, returns the text of the selected item. If no item is
selected, returns an empty string ''''.

For other kind of object, generates an Invalid Object error.

-76-

FastBasic Guide – List of Errors

List of Errors

Error 1: Syntax error
There is a syntax error in written line.
To check where, open the line with error and then try to save it.
It will appear the symbol for syntax error: '??'

Error 2: Break
A STOP command has been found, or the application launcher silk-
button has been pressed in order to stop the program.

Error 3: Internal error
An internal fatal error has occurred. Execution will be stopped.

Error 4: Not enough free memory
There is not enough free memory to work.

Error 5: Stack overflow
Stack has been overflowed.
One reason can be that the stack size is too small, but usually it
is due to a user function which is repeatedly called.
You can check the Calls Stack.

Error 6: String too long
The size of the string is too large, or there is not enough free
memory.
The maximum size of a string is 63.5 KB (65024 bytes).

Error 7: Out of string space
There is no more space to create a new string.

Error 8: Invalid argument
A function has been called with an invalid argument.

Error 9: Invalid array index
The passed index is out of range, or the number of indexes is not
correct.

Error 10: MathLib not present
A mathematical function has been called, and the MathLib library
is not present.
MathLib is a library that some other programs can use.
It is freeware and it can be downloaded from internet at
http://www.radiks.net/~rhuebner/mathlib.html

-77-

FastBasic Guide – List of Errors

Error 11: Not a number
An arithmetic operation caused the NaN error. The most common
reasons are:

• SQR of a negative number
• a division 0 / 0
• a division INF / INF
• a multiplication INF * 0

Error 12: Number too big
The result of an arithmetic operation is out of limits.
The limit for an floating point operation is: ±1.79769E+308
The limits for an integer operation are:

• +2,147,483,647 for positive values.
• -2,147,483,648 for negative values.

Error 13: Division by zero
Program tried to divide a number by zero.

Error 14: Invalid name
A file command or function contains an invalid name.

Error 15: Invalid file number
A file command or function contains an invalid file number. Maybe
the file number is out of limits (between 1 and 255) or the file
hasn't been open.

Error 16: File not found
The file doesn't exist.
Use the function DIR$() to check whether a file exists or not.

Error 17: File not valid
The type of the file is not correct.
Try to use the separator CREATOR and TYPE if they are not the
default.

Error 18: File number already in use
Command OPEN used with a file number which is already in use.

Error 19: File already exist
Commands FILECOPY, NAME or MKDIR with a destination file name that
already exists.
Use the function DIR$() to check whether a file exists or not.

Error 20: File already open
Command OPEN tried to open a file which is already open.

-78-

FastBasic Guide – List of Errors

If the file remained open due to a program crash, try to re-
install it.

Error 21: Could not create file
Commands OPEN or FILECOPY failed when trying to create a new file.

Error 22: File mode not valid
Command OPEN tried to open an existing file in a mode that the
file doesn't accept.
Try to use the separator CREATOR and TYPE if they are not the
default.

Error 23: Invalid record number
Commands PUT or GET tried to work with a record number out of
limits.
Check the number of existing records with function LOF().

Error 24: Storage area is full
There is no more space in the storage are.
Check the amount of free space with function FRE(-2).

Error 25: Permission denied
Write permission is not enabled for that file.
Use function FILEATTR() to check permissions of a file.

Error 26: Input past end
Program tried to read data from a file (with INPUT #, GET # …),
and there are no more data to read.
Use function EOF() to check if the end of a file has been reached.

Error 27: Compressed documents are not supported
Program tried to read data from a sequential file (with INPUT #,
LINE INPUT # …), and that file has been saved as a compressed
document.

Error 28: Device error
This error is reserved.

Error 29:
This error is reserved.

Error 30: File error
It occurred an undetermined error with a file.

-79-

FastBasic Guide – List of Errors

Error 31: Device I/O error
It occurred an Input/Output error.

Error 32: Device unavailable
The program tried to use a device which is unavailable.
Use function DRIVE() to check if a device is available.

Error 33: Invalid Rom Version
The program called a command or a function that needs a higher
Palm OS version.
The OS version can be checked with function SYSVAR()

Error 34: RETURN without GOSUB
A command RETURN has been found when no GOSUB has been called
before.

Error 35: RESUME without ERROR
A command RESUME has been found when no error has been occurred or
ON ERROR hasn't been programmed before.

Error 37: Type mismatch
A numeric value was found when it was expected a string, or vice
versa.
The most common causes are:

• CASE, whit different type of SELECT CASE
• TEXT OBJECT, trying to modify a numeric field with a non-

numeric string

Error 38: Invalid object number
A GUI-command or a GUI-function was called with the object ID out
of limits.
The object ID must be an integer value between 0 and 8999.

Error 39: Object number already exists
A new object was tried to be created, and there already is another
one with the same ID.

Error 40: Object not found
The object ID doesn't exist is current form.

Error 41: Array is used as an options-list in a GUI object
You tried to REDIM a string-array which is used as an options-list
in a list or in a trigger.

-80-

FastBasic Guide – List of Errors

Error 42: Invalid object type
The object doesn't allow the operation that you tried to do.
Use the function OBJTYPE() to know the object type.

Error 43: Form not found
You tried to open a form that doesn't exist in the resources file.

Error 44: Form already open
You tried to open a form that is already open.

Error 45: Screen already locked
You tried to lock the screen, and it's already locked

Error 46: Not available in Demo mode !
The command or the function that was called is not available in
Demo mode.

Error 47: Command not available in this version
The command that was called is not available in this version.

Error 48: Function not available in this version
The function that was called is not available in this version.

Error 257: IF without ENDIF
It was found an IF command without its corresponding ENDIF.
Press the trigger at the left of the line and select 'Search
ending line'

Error 258: ELSE without ENDIF
It was found an ELSE command without its corresponding ENDIF.
Press the trigger at the left of the line and select 'Search
ending line'

Error 259: ELSE without IF
It was found an ELSE command without its corresponding IF.
Press the trigger at the left of the line and select 'Search
beginning line'

Error 260: END IF without IF
It was found an ENDIF command without its corresponding IF.
Press the trigger at the left of the line and select 'Search
beginning line'

Error 261: WHILE without WEND
It was found a WHILE command without its corresponding WEND.

-81-

FastBasic Guide – List of Errors

Press the trigger at the left of the line and select 'Search
ending line'

Error 262: WEND without WHILE
It was found a WEND command without its corresponding WHILE.
Press the trigger at the left of the line and select 'Search
beginning line'

Error 263: DO without LOOP
It was found a DO command without its corresponding LOOP.
Press the trigger at the left of the line and select 'Search
ending line'

Error 264: LOOP without DO
It was found a LOOP command without its corresponding DO.
Press the trigger at the left of the line and select 'Search
beginning line'

Error 265: EXIT DO is not inside a DO loop
Command EXIT DO was programmed outside its corresponding DO..LOOP
loop.

Error 266: FOR without NEXT
It was found a FOR command without its corresponding NEXT.
Press the trigger at the left of the line and select 'Search
ending line'

Error 267: NEXT without FOR
It was found a NEXT command without its corresponding FOR.
Press the trigger at the left of the line and select 'Search
beginning line'

Error 268: EXIT FOR is not inside a FOR-NEXT loop
Command EXIT FOR was programmed outside its corresponding FOR…NEXT
loop.

Error 269: FOR-NEXT variables don't match
The variable programmed with NEXT is not the same than the one
programmed with FOR.
Press the trigger at the left of the line and select 'Search
beginning line' to locate the line that contains the command FOR.

Error 270: SELECT CASE must be followed by a CASE clause
The next line following a SELECT CASE sentence is not a CASE
clause.

-82-

FastBasic Guide – List of Errors

Error 271: SELECT CASE without END SELECT
It was found a SELECT CASE command without its corresponding END
SELECT.
Press the trigger at the left of the line and select 'Search
ending line'

Error 272: END SELECT without SELECT CASE
It was found a END SELECT command without its corresponding SELECT
CASE.
Press the trigger at the left of the line and select 'Search
beginning line'

Error 273: CASE without SELECT CASE
It was found a CASE command outside its corresponding SELECT
CASE .. END SELECT.

Error 274: GOTO beyond loop limits
The line where to go is outside the current loop.
Commands EXIT DO or EXIT FOR are recommended for ending a loop.
If you need to program this GOTO, you can avoid this error
selecting the checkbox 'Ignore GOTO errors' in Menu>This program
settings.

Error 275: Constant not defined
The named-constant you try to use, hasn't been defined with
command CONST.

Error 276: Constant not defined
The named-constant you try to use, hasn't been defined with
command CONST.

Error 277: Constant already defined
The named-constant you try to define, has already been defined
with command CONST.

Error 278: Constant already defined
The named-constant you try to define, has already been defined
with command CONST.

Error 279: Not all constants have been defined
There is a named-constant that hasn't been defined with command
CONST.
The program will continue without any problem, but undefined
numeric constants will be set to zero and string constants to
zero-length string "".
If a constant is not used, it can be deleted pressing the button

-83-

FastBasic Guide – List of Errors

VAR at the bottom of the screen, then selecting it and pressing
the delete button.
Another way to delete all unused constants and variables is
Menu>Run>Clean variables space.

Error 280: Not all constants have been defined
There is a named-constant that hasn't been defined with command
CONST.
The program will continue without any problem, but undefined
numeric constants will be set to zeroand string constants to zero-
length string "".
If a constant is not used, it can be deleted pressing the button
VAR at the bottom of the screen, then selecting it and pressing
the delete button.
Another way to delete all unusued constants and variables is
Menu>Run>Clean variables space.

Error 281: Command CONST must be at the beginning of the program
The command CONST is allowed only at the beginning of the program,
before any executable line.

Error 282: Command CONST is not allowed inside SUBs
The command CONST is allowed only at the beginning of the program,
before any executable line, and only in the MAIN PROCEDURE.

Error 283: EXIT SUB is not inside a SUB
The command EXIT SUB has been programmed in the MAIN PROCEDURE.

Error 284: Invalid number of indexes
The number of indexes that you have passed to the array, is not
the same than the defined one.
You can check the number of indexes pressing the button VAR and
then selecting the array.

Error 287: Invalid number of paramaters
The number of parameters that you passed to a function or to a
command doesn't match the defined one.

Error 290: Initial Form not found !
The initial form that is defined in Menu>This program
settings>Next doesn't exist is the resources file.

Error 321: Can't continue (a previous Fatal Error had occurred)
Some errors prevent continuing, because the result can be
unpredictable.
These errors are:

-84-

FastBasic Guide – List of Errors

• 3 Internal error
• 4 Not enough free memory
• 5 Stack overflow

-85-

	Table of Contents
	FastBasic Quick Start
	Variables, Constants and Operators
	Integer variable
	Floating point variable
	String variable
	Arrays
	Named constants
	Numeric constants
	String constant
	Operations
	Derived Math functions

	List of Commands: Normal Commands
	Commands that assign a value to a variable
	CONST
	INPUT
	LET
	LSET
	MID$
	REDIM
	RSET
	SORT
	SWAP

	Control Commands
	CALL
	CASE
	DO
	ELSE
	END
	END IF
	END SELECT
	ERROR
	EXIT DO
	EXIT FOR
	EXIT SUB / FUNCTION
	FOR
	GOSUB
	GOTO
	IF … GOTO
	IF …THEN
	NEXT
	ON ERROR
	RESUME
	RETURN
	RUN
	SELECT CASE
	STOP
	WEND
	WHILE

	Commands that draw on the screen
	ARC
	CIRCLE
	CLS
	LINE
	LINE TO
	POINT
	PRINT
	PRINT AT
	RECTANGLE

	File Commands
	CHDIR
	CHDRIVE
	CLOSE
	FILE COPY
	GET #
	GET RSRC #
	INPUT #
	KILL
	LINE INPUT #
	MKDIR
	NAME
	OPEN
	PRINT #
	PUT #
	PUT RSRC #
	RMDIR
	SEEK #
	WRITE #

	Other Commands
	BEEP
	PAUSE
	RANDOMIZE
	REM
	SEND KEYS
	SEND CHAR
	SOUND

	List of Commands: GUI Commands
	Commands that create objects
	NEW BITMAP
	NEW BUTTON
	NEW CHECKBOX
	NEW FORM
	NEW LABEL
	NEW LIST
	NEW NUMFIELD
	NEW POPUPLIST
	NEW POPUPTRIGGER
	NEW PUSHBUTTON
	NEW RPTBUTTON
	NEW SELECTTRIGGER
	NEW SLIDER
	NEW STRFIELD

	Commands that modify objects
	DISABLE OBJECT
	ENABLE OBJECT
	FOCUS OBJECT
	FRM TITLE
	HIDE OBJECT
	LIMITS OBJECT
	MOVE OBJECT
	OPTIONS LIST
	OPTIONS TRIGGER
	REMOVE OBJECT
	RESIZE FORM
	RESIZE OBJECT
	SELECT FIELD
	SELECT GROUP
	SELECT LIST
	SHOW OBJECT
	TEXT OBJECT
	TOPITEM
	VALUE OBJECT

	Commands that affect the screen
	CLOSE FORM
	COORDINATES
	FONT
	FONT USER
	FRM REDRAW
	HIRES SCALING
	INK
	INVERT
	OPEN FORM
	PAPER
	RESOLUTION

	Other GUI-Commands
	ALERT
	DRAW BITMAP
	MSGBOX
	WAIT

	List of Commands: Extended Commands
	MODE
	PLAY MIDI
	PLAY WAVE
	SCREEN LOCK

	List of Functions: Numeric Functions
	ABS
	ASC
	ATN
	CALCDATETIME
	COS
	CVD
	CVI
	CVL
	CVS
	DAY
	DEG
	DRIVE
	EOF
	ERR
	EXP
	FILEATTR
	FIX
	FRE
	HOUR
	IIF
	INSTR
	INT
	LBOUND
	LEN
	LOC
	LOF
	LOG
	MINUTE
	MONTH
	NOW
	NUMFILES
	PI
	POS
	RAD
	RND
	ROUND
	RSRCID
	SECOND
	SGN
	SIN
	SQR
	STRCOMP
	SYSVAR
	TAN
	TICKS
	TIMER
	UBOUND
	VAL
	WEEKDAY
	YEAR

	List of Functions: String Funtions
	CHR$
	CURDIR$
	DATE$
	DELOCALIZE$
	DIR$
	ERROR$
	FILECREATOR$
	FILETYPE$
	FORMAT$
	HEX$
	IIF$
	INKEY$
	INPUT$
	LCASE$
	LEFT$
	LOCALIZE$
	LTRIM$
	MID$
	MKD$
	MKI$
	MKL$
	MKS$
	NEXTFILE$
	OCT$
	RIGHT$
	RSRCTYPE$
	RTRIM$
	SPC$
	STR$
	STRING$
	SYSVAR$
	TIME$
	TRIM$
	UCASE$

	List of GUI-Functions: Numeric Functions
	ALERT
	CURFOCUS
	CURFONT
	CURFORM
	CURINK
	CURPAPER
	CURRESOLUTION
	FONTHEIGHT
	FONTWIDTH
	GROUPSELECTION
	LASTEVENT
	LISTSELECTION
	MSGBOX
	NUMFORMS
	NUMOBJECTS
	OBJDYNAMIC
	OBJID
	OBJNDX
	OBJPOS
	OBJSTYLE
	OBJTYPE
	OBJVALUE
	POPUPLIST
	RGB
	WAIT BTN

	List of GUI-Functions: String Functions
	INPUTBOX$
	OBJTEXT$

	List of Errors
	Error 1: Syntax error
	Error 2: Break
	Error 3: Internal error
	Error 4: Not enough free memory
	Error 5: Stack overflow
	Error 6: String too long
	Error 7: Out of string space
	Error 8: Invalid argument
	Error 9: Invalid array index
	Error 10: MathLib not present
	Error 11: Not a number
	Error 12: Number too big
	Error 13: Division by zero
	Error 14: Invalid name
	Error 15: Invalid file number
	Error 16: File not found
	Error 17: File not valid
	Error 18: File number already in use
	Error 19: File already exist
	Error 20: File already open
	Error 21: Could not create file
	Error 22: File mode not valid
	Error 23: Invalid record number
	Error 24: Storage area is full
	Error 25: Permission denied
	Error 26: Input past end
	Error 27: Compressed documents are not supported
	Error 28: Device error
	Error 29:
	Error 30: File error
	Error 31: Device I/O error
	Error 32: Device unavailable
	Error 33: Invalid Rom Version
	Error 34: RETURN without GOSUB
	Error 35: RESUME without ERROR
	Error 37: Type mismatch
	Error 38: Invalid object number
	Error 39: Object number already exists
	Error 40: Object not found
	Error 41: Array is used as an options-list in a GUI object
	Error 42: Invalid object type
	Error 43: Form not found
	Error 44: Form already open
	Error 45: Screen already locked
	Error 46: Not available in Demo mode !
	Error 47: Command not available in this version
	Error 48: Function not available in this version
	Error 257: IF without ENDIF
	Error 258: ELSE without ENDIF
	Error 259: ELSE without IF
	Error 260: END IF without IF
	Error 261: WHILE without WEND
	Error 262: WEND without WHILE
	Error 263: DO without LOOP
	Error 264: LOOP without DO
	Error 265: EXIT DO is not inside a DO loop
	Error 266: FOR without NEXT
	Error 267: NEXT without FOR
	Error 268: EXIT FOR is not inside a FOR-NEXT loop
	Error 269: FOR-NEXT variables don't match
	Error 270: SELECT CASE must be followed by a CASE clause
	Error 271: SELECT CASE without END SELECT
	Error 272: END SELECT without SELECT CASE
	Error 273: CASE without SELECT CASE
	Error 274: GOTO beyond loop limits
	Error 275: Constant not defined
	Error 276: Constant not defined
	Error 277: Constant already defined
	Error 278: Constant already defined
	Error 279: Not all constants have been defined
	Error 280: Not all constants have been defined
	Error 281: Command CONST must be at the beginning of the program
	Error 282: Command CONST is not allowed inside SUBs
	Error 283: EXIT SUB is not inside a SUB
	Error 284: Invalid number of indexes
	Error 287: Invalid number of paramaters
	Error 290: Initial Form not found !
	Error 321: Can't continue (a previous Fatal Error had occurred)

